
Application Security
Sandboxing features of the Linux kernel and systemd

2025-05-22, NLUUG (Utrecht) - Michael Boelen2025-05-22, NLUUG (Utrecht) - Michael Boelen

$ whoami
● Michael Boelen

● Blogger
● Linux Audit
● linux.vooreenbeginner.nl
● meereco.nl

● Interests
● Linux and Unix 🐧 🦕
● Information Security 🔒
● Chess ♟️
● Metal detecting 🪙

● Open source developer
● rkhunter / Lynis

● Volunteer
● Communication Commission @ NLLGG
● Webmaster @ NLUUG
● Participation council (primary school)
● Neighborhood watch program

● More at michaelboelen.com
● Mastodon: @mboelen

https://linux-audit.com/
https://linux.vooreenbeginner.nl/
https://meereco.nl/
https://michaelboelen.com/

Before we begin
● Questions?

● Short: ✋
● Long: at the end

● Slides will be published
● Share your insights today:

● Tag @mboelen and #nluug at Mastodon

This talk
● Make applications a bit more secure

● Reduce attack surface
● Limit impact

● Using the features of:
● Linux (kernel)
● systemd

● Goals:
● More secure software implementations
● Knowledge sharing
● Cooperation (system hardening)

The problem

Solution: Application security
● Generic

● Patch
● Sane defaults
● Application-specific security measures

● External barriers
● File system
● Security frameworks
● Sandboxing

Linux kernel
● Security modules / Frameworks

● AppArmor / SELinux
● Namespaces
● Control Groups (cgroups)
● Secure Computing (seccomp / seccomp-bpf)

Linux kernel
● AppArmor

● Debian / Ubuntu
● Fairly easy to use

● SELinux
● RHEL / Fedora
● Not so easy to use for beginners ¹

¹ If there are presentations "SELinux is easy", that's a hint

Linux kernel
● Namespaces

● The Matrix!
● Available namespaces

● Inter-Process Communication
● Mount
● Processes
● Time
● Users
● and others...

Linux kernel
● cgroups (Control Groups)

● Limit resources
● Reduce access

● Prioritize resources
● Increase amount of time

● Accounting
● Measure, billing

● Control
● Freeze, snapshot, resume

Linux kernel
● seccomp

● Secure Computing
● Defines which system calls are allowed
● Policy: continue or instant kill 🔫
● Great for sandboxing 🔒
● Examples: Flatpak, systemd, snap

● seccomp-bpf
● Similar to seccomp, slightly different implementation
● Using Berkeley Packet Filter
● Examples: Android, Chrome, Firefox, OpenSSH

Sandboxing
● Sandbox usage is still limited

● Web browsers
● Security-minded tools
● Sandbox tools

● Firejail
● Bubblewrap

● And… systemd!

systemd
● systemd and seccomp = 🔒

● systemd-nspawn (containers)
● service units

Let’s take one step back: systemd in a nutshell

systemd
● What is systemd?

● System manager
● Service manager

systemd
● Units

● timer
● service
● automount
● mount
● path
● etc.

systemd
● Management

● systemctl cmd MYAPP.service
● start | stop | restart | reload | reload-or-restart
● enable | disable | mask | unmask

● Configuration
● systemctl cmd MYAPP.service

● cat | edit
● Logging

● systemctl status MYAPP.service
● journalctl -u MYAPP.service

systemd
● Getting more out of systemd

● Units
● Linux Audit: Overview of systemd units

● Cheat sheets
● Linux Audit: journalctl
● Linux Audit: systemctl

https://linux-audit.com/systemd/systemd-units-and-their-purpose/
https://linux-audit.com/cheat-sheets/journalctl/
https://linux-audit.com/cheat-sheets/systemctl/

systemd
● Changing existing units

● Override
● Purpose: complements initial configuration

● How?
● systemctl edit --full myapplication.service
● systemctl edit myapplication.service
● /usr/lib/systemd/system/myapplication.service.d/*.conf
● /etc/systemd/system/myapplication.service.d/*.conf

systemd
Editing /etc/systemd/system/cron.service.d/override.conf

Anything between here and the comment below will become the new contents of the file

Lines below this comment will be discarded

/lib/systemd/system/cron.service
[Unit]
Description=Regular background program processing daemon
Documentation=man:cron(8)
After=remote-fs.target nss-user-lookup.target
#
[Service]
EnvironmentFile=-/etc/default/cron
ExecStart=/usr/sbin/cron -f $EXTRA_OPTS
IgnoreSIGPIPE=false
KillMode=process
Restart=on-failure
#
[Install]
WantedBy=multi-user.target

systemd
Editing /etc/systemd/system/cron.service.d/override.conf

Anything between here and the comment below will become the new contents of the file
[Service]
CPUSchedulingPolicy=idle
IOSchedulingClass=idle
Nice=19
Lines below this comment will be discarded
/lib/systemd/system/cron.service
[Unit]
Description=Regular background program processing daemon
Documentation=man:cron(8)
After=remote-fs.target nss-user-lookup.target
#
[Service]
EnvironmentFile=-/etc/default/cron
ExecStart=/usr/sbin/cron -f $EXTRA_OPTS
IgnoreSIGPIPE=false
KillMode=process
Restart=on-failure
#
[Install]
WantedBy=multi-user.target

systemd
● Example: ProtectSystem (property)

● Marks parts of the filesystem as read-only
● Very powerful
● But…

● How to discover this property?
● How to configure?
● When (not) to use?

systemd
● Security options for units

● 40+ properties (and counting)
● Most are for sandboxing
● Available in official documentation, but...

● Technical 🤓
● Difficult 🤐
● Lack of examples 🤔

systemd

systemd

systemd

systemd
● Providing an alternative:

● Guides 🚒
● systemd service hardening
● Resolving basic issues with failed systemd service
● Steps to take when a service unit fails after hardening

● Unit settings (properties)
● Overview
● + Alternative description
● + Examples

● Ready-to-use¹ profiles
● Hardening profiles

¹ may need adjustments depending on your distribution and configuration

https://linux-audit.com/systemd/how-to-harden-a-systemd-service-unit/
https://linux-audit.com/systemd/settings/units/
https://linux-audit.com/systemd/troubleshooting-a-failed-systemd-unit/
https://linux-audit.com/systemd/settings/units/
https://linux-audit.com/systemd/hardening-profiles/

systemd

systemd
Be aware after enabling new settings: 🔥 Errors 🔥

The best kind of errors:
● Quick 🚀
● Explosive 💥
● Instill fear and doubt 🐉

Conclusion: Awesome errors! 🤩

systemctl restart nginx.service
Job for nginx.service failed because the control process exited with error code.
See "systemctl status nginx.service" and "journalctl -xeu nginx.service" for details.

systemd

Question:
What could be the cause of the 'permission denied'?

systemd

Solution: ExecPaths=/usr/sbin/nginx /usr/lib

systemd
● Troubleshooting

● Generic tips
● Apply in small steps 🪜
● ✅ systemctl status myapplication.service
● ✅ journalctl -u myapplication.service

● Capabilities and system calls
● Use ldd and strace
● Use property SystemCallLog

● SystemCallLog=~@system-service chroot

Let's harden some services together!
● Help the project

● What services do you run?
● Server or desktop?

● Contact
● Details: michaelboelen.com
● @mboelen

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

