

Documentation as Code

Gábor Nyers

Instructor and consultant
@Trebut

Abstract

If you work as an IT professional chances are that you spend a great deal of your time on
creating documentation. Want to learn how to create documents that are built from reusable bits,
may contain generated diagrams and styled beautifully for both on-line and printed medium? As
it is often the case the right tooling and process can transform a tedious and error-prone chore
into a fulfilling activity.

In this session you’ll see a demonstration of creating documentation as if it would be code. We’ll
consider the necessary skills - like Markdown, RST and version control - and using some handy
tooling (e.g.: Pandoc, Jinja2, MkDocs or Sphinx, Mermaid) we see a few examples of how to
create different types of documents, such as: technical articles, project documentation,
presentation slides, contracts, invoices or even your very own parameterized CV generator.

In addition, for those who need it, the approach supports Git based collaboration and automated
build pipelines out of the box.

Agenda

● Intro
● Concepts
● Tools & Technologies
● Demos:

– Useful editor features
– Simple workflow to create HTML document
– Simple workflow to create PDF document
– Jinja2 to parameterized documentation
– Collaboration workflow
– Publish documentation as a website

Intro

Bio:

● In IT since 1998
● Freelance Instructor and

Consultant
● Open Source specialization
● Focus: DevOps topics

Linux, Docker, Kubernetes,
Ansible, Git,
Python, (backend) WebDev

● Occasionally:
Embedded stuff: RPi, ESPxx,
MicroPython, ESPHome

Why this presentation:

● Authoring documentation has
been one of the default activity
for the last 20 years

● Share my current stack
● Types of documents:

– Quotes
– Project delivery documentation
– Courseware
– IT OPS documentation
– CVs
– Work journal

How I use these tools

Personal stuff:

● CV
– Always built for the specific position
– Assembling full CV from parts
– Toggle visibility of info based on

intended audience
– Example

● Work journal
– Keeping track of tasks performed

per customers
– @TODOs tags: general reminders

and ideas

● Personal knowledge base
– Instructions, references, ...

Work related:

● Project docs
– Instructions, reference docs,
– Publish docs as static site

● Courseware
– Chapters, Exercises and

Attachments (accompanying files)
– code blocks: include into doc or

export from doc to files
– Release management
– Publishing as:

static site, PDF or Jupyter Notebook
– Examples:

● Exercises Workshop Virt/Containers
● Exercises AWS workshop

Everything in

../../../../../tmp/2025-05-22_nluug/resume.pdf
../../../../../tmp/2025-05-22_nluug/virtualization-vs-containers-2-exercises-v2c.pdf
../../../../../tmp/2025-05-22_nluug/aws-s3-intro-2-exercises-v1c.pdf

Concepts

Types of documentation in scope

● Simple vs. Complex
● Confidential vs. Internal vs.

Public
● Printed vs. Electronic
● Electronic:

Web page vs. PDF/eBook
● Area: technical, financial, legal

Examples:

● Technical docs:
– Instruction, Project docs, Diagrams

● Courseware:
– Syllabus, Slides, Exercises,

Presentations
● Business docs:

– Meeting minutes, Quote, Invoice
● Personal docs:

– CV, Journal/Notes

Basic promise and an article of faith

Word processors [1] and Wikis [2] are considered

 not the right tool
for authoring and maintaining documentation

[1] like Microsoft Word or LibreOffice Writer

[2] like Atlassian Confluence or Xwiki

Why Documentation as Code (DaC)?

DaC is not
be the best approach for

all types of documentation and
in all situations[3]!

[3] overhead is unjustified: one-off doc, no time or knowledge

Why Documentation as Code (DaC)?

Productivity:

● Speed: Office products are not
meant for writing large
documents or documentation
project

● Distraction: focus on content not
formatting

● Navigation
● Speed

Control:

● Assemble larger documents from
smaller ones

● Include external content
● Parameterize documentation

What if:
– some information is not available

at the time of writing?
or

– it is variable?

Why Documentation as Code (DaC)?

Collaboration:

● Working on a large project with
multiple people

● Exchanging (parts of) documents
● Retaining conversation or

decision about final content
● Approvals
● Multiple versions with minor

differences

Single source of truth:

● Synchronization between
multiple end products, like

● Internal vs public documentation
● Documents, slides supporting

files

DaC Workflow

Build
Version
control

Content
creation

Publish

Content Repo Pipelines Media

● Markup language
● Static and parameterized

content
● Editors

● Spelling checker,
Macros, Snippets

● Graphics
● Figures
● Diagrams

● Aux. Tooling
● (Signed commits)

● Branching
● Issue tracker
● Pull Request / Merge

Request
● (Non-repudiation)

● Automatic builds
● Content Assembly

● Content variables
● Includes, excludes

● Templates
● Content rendering
● Conversions

● md →html
● html→pdf
● md → TeX→ pdf
● md → wiki

● Stand-alone documents
● (pdf, odt, docx, etc...)

● Static websites
● Sphinx, MkDocs,

GitBook, Docusaurus
● ReadTheDocs,

Git{hub,lab} pages
● Wikis

● Xwiki
● Mediawiki
● Confluence

Tools & Technologies

● Content creation
– Markup languages
– Editors

● Version control
– Gitea, Gitlab, Github

● Building:
– Jinja2
– CSS
– Pandoc
– WeasyPrint

● Publishing
– Sphinx
– MkDocs

DaC Workflow – tools & technologies

Build
Version
control

Content
creation

Publish

Content Repo Pipelines Media

Markdown

NeoVIM

Git

Gitea
GithubGitlab

MkDocs

Pandoc

Docusaurus

mdbooks

Jinja2

VScode

Markup languages for authoring content

HTML
XML/DocBook

SGML

TeX
AsciiDocs

troff
RTF

ReSTructuredText
Markdown

Wiki

Resembles
program code

Looks more like
plain text

● Rigorously standardized
● Syntax:

● Regular
● Very verbose, and
● Quite distracting

● Application:
● Typesetting
● Printing

● Loosely defined
● Syntax:

● Organic
● Dense
● User friendly

● Application:
● Email
● Wiki

https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/DocBook
https://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language
https://en.wikipedia.org/wiki/TeX
https://en.wikipedia.org/wiki/Troff
https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html
https://en.wikipedia.org/wiki/Markdown

Markup languages for authoring documentation

HTML
XML/DocBook

SGML

TeX
AsciiDocs

troff
RTF

Resembles
program code

Looks more like
plain text

● Rigorously standardized
● Syntax:

● Regular
● Very verbose, and
● Quite distracting

● Application:
● Typesetting
● Printing

● Loosely defined
● Syntax:

● Organic
● Dense
● Intuitive

● Application:
● Email
● Wiki

reSTructuredText
Markdown

Wiki

1

2

https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/DocBook
https://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language
https://en.wikipedia.org/wiki/TeX
https://en.wikipedia.org/wiki/Troff
https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html
https://en.wikipedia.org/wiki/Markdown

reSTructuredText
(or ReST)

● Originally invented in the Python
community

● A popular option for authoring
and hosting documentation with
Sphinx and ReadTheDocs
– Linux kernel documentation

● Small number of tools
● Feature rich

================

Document Heading

================

Heading

=======

Sub-heading

Paragraphs are separated by a blank line.

Text attributes: *emphasis*, **strong emphasis** and ``monospace``.
This is a link to the

`Python home page <https://www.python.org>`_

Bullet list:

* apples

* oranges

(automatically) Numbered list:

#. one

#. two

.. code:: python

 # this is a python code block

 print(‘hello world!’)

https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html
https://www.sphinx-doc.org/
https://readsthedocs.com/

Markdown

● Very popular markup language
● In its original specs it is simple

and quite loosely defined
● Easy to read
● Several dialects, e.g.:

– Markdown (2004),
– Github Flavored Markdown ,
– Pandoc Markdown ,
– Microsoft Learn Markdown

● Dialects
– Provide more features
– Add more standardization

Heading

Sub-heading

Paragraphs are separated by a blank line.

Text attributes: _italic_, *bold*, and `monospace`. This is
a link to the
[Python home page](https://www.python.org)

Bullet list:

- apples
- oranges

(automatically) Numbered list:

1. one
1. two

```python
# this is a Python code block
print(‘hello world!’)
```

https://pandoc.org/MANUAL.html#pandocs-markdown
https://daringfireball.net/projects/markdown/
https://github.github.com/gfm/
https://pandoc.org/MANUAL.html#pandocs-markdown
https://learn.microsoft.com/en-us/contribute/content/markdown-reference

Editors

VIM / NeoVIM
● Spelling checker
● Snippets with SnipMate or

UltiSnip
● vim-pandoc, vim-pandoc-syntax
● Macros / scripting: built-in
● Folding

VScode
● Install extensions:

code –-install-extension ExtName
● A few extensions:

– Spell checker:
● streetsidesoftware.code-spell-checker

– Markdown:
● robole.markdown-snippets,

garlicbreadcleric.pandoc-markdown-
syntax, davidanson.vscode-
markdownlint, tomoyukim.vscode-
mermaid-editor

– Other:
● samuelcolvin.jinjahtml

https://www.vim.org/
https://neovim.io/
https://github.com/vim-pandoc/vim-pandoc
https://github.com/vim-pandoc/vim-pandoc-syntax
https://code.visualstudio.com/

Demo:

Useful editor features

tmpl

1

2

cd demo-editor-setup

Templates
$ ls -sF ~/.vim/templates/
total 48
4 bootstrap.html 4 default.py* 4 jinja.md
4 default.css 4 default.sh* 4 meeting.md
4 default.html 4 exercise.md 4 revealjs.html
4 default.md 4 intermediate.py 4 tailwind.html

$ vim chapter01.md # uses: default.md
$ vim exercise01.md # uses: exercise.md

Snippets
ls -sF ~/.vim/ftplugin/markdown.vim

Snippets in VIM <INSERT> mode:
[<Tab>, table<Tab>, bash<Tab>, code<Tab>
\cb<Tab>, j2-block<Tab>

macros in VIM:
\html, \cb

Pandoc – universal document converter

● Versatile document conversion
tool, e.g.:
– Markdown, HTML, PDF, ePub,

DocX, Jira/Confluence
– In total 44x input / 65x output

formats

● Feature rich own Markdown
dialect

● Excellent support for PDF with
multiple external engines
(LaTeX , WeasyPrint ,
 GNU roff)

● Well suited for automation:
– Simple shell scripts
– CI/CD pipelines
– Extensive customization via

templates

● Very advanced filters to read and
modify content (AST)

● Try Pandoc on-line
(incl. several more advanced
examples!)

https://pandoc.org/getting-started.html
https://www.latex-project.org/
https://weasyprint.org/
https://www.gnu.org/software/groff/
https://pandoc.org/try/

Demo:

Simple workflow to create HTML document

Pandoc

$ ls -sF ~/.vim/templates/*.md # (1)
 4 default.md 4 exercise.md 4 jinja.md 4 meeting.md
$ vim exercise-01.md # (2)
$ pandoc -f markdown -t html5 -s --toc \
 -o exercise-01.html exercise-01.md # (3)

tmpl

1

2 3

WeasyPrint - PDF renderer

● Renders HTML documents to
PDF based on CSS
– Like when printing a web page

from a browser, except better!
– Very familiar for web developers

● Exceptional level of
customization
– Extensive support for CSS
– Extensive support PDF
– Arbitrary document layout:

invoices, tickets, leaflets,
diplomas, documentation, books

● Very active open source project

● Examples :
– Report: PDF, source: HTML + CSS
– Invoice: PDF, source: HTML + CSS
– Book: PDF,
–

● Using
– Installation instructions

https://weasyprint.org/
https://weasyprint.org/
https://raw.githubusercontent.com/CourtBouillon/weasyprint-samples/main/report/report.pdf
https://github.com/CourtBouillon/weasyprint-samples/blob/main/report/report.html
https://github.com/CourtBouillon/weasyprint-samples/blob/main/report/report.css
https://raw.githubusercontent.com/CourtBouillon/weasyprint-samples/main/invoice/invoice.pdf
https://github.com/CourtBouillon/weasyprint-samples/blob/main/invoice/invoice.html
https://github.com/CourtBouillon/weasyprint-samples/blob/main/invoice/invoice.css
https://raw.githubusercontent.com/CourtBouillon/weasyprint-samples/main/book/book.pdf
https://doc.courtbouillon.org/weasyprint/stable/first_steps.html#installation

Demo:

Simple workflow to create PDF document

Pandoc

$ ls -sF demo-simple-workflow/css/ # (1)
$ pandoc -f markdown -t html5 -s --toc \
 -o chapter01-intro.html chapter01-intro.md # (2)

$ weasyprint chapter01-intro.html chapter01-intro.pdf # (3)

tmpl

2 3

1

Why use Pandoc + WeasyPrint for PDFs?

● Noteworthy alternatives:

– Any of the TeX distributions
● Excellent choice, unless no prior

experience
● Feature rich

– Adobe products
● Restrictive
● Pricey

● Yes, but:

– Pandoc and WeasyPrint are 100%
open source and actively
developed!

– Every element of the workflow is
modern, widely used and in active
development

– Most elements have extensive
international standardization
(HTML, CSS, PDF)

Jinja - Python templating engine

Feature overview:

● Content extended with logic
● For generating ANY text

document:
– Markdown, HTML, bash script

● Kind of a programming language
for creating documents
– Replace simple variables
– Loops and conditionals (aka.

“tests”)
– Complex data structures
– Complex macros and filters

● Custom filters in Python

Example use cases:

● Parameterized documents:
– Instruction for TST or PRD env
– Invoice

● Assemble documents from parts:
– Generic document header
– I18n: same document in EN or NL

● Static or conditional includes
– Public or Internal versions of the

same document
● Complex document structures with

template-inheritance
– Base document
– Expanded by web- or print specific

content or structure

https://jinja.palletsprojects.com/

Demo:

Complex docs with Jinja2

2025-05-22_nluug

left_nav

parts/nl/part_contact.md

parts/nl/part_top_skills.md

parts/nl/part_certifications.md

parts/nl/part_languages.md

main_body

part_summary.md

parts/nl/part_skills.md

parts/nl/part_experience.md

parts/nl/experience_emplA.md

parts/nl/experience_emplB.md

parts/nl/experience_emplC.mdparts/nl/part_education.md

summary

skills

experience

edu-

cation

Using `j2pp.py` to assemble a demo CV from multiple parts

https://github.com/gnyers/python-tuesday/tree/master/session11

Demo:

Complex docs with Jinja2

End result
$ tree -F .
.

 ├── 2025-05-22_nllug/
 │ ├── data.yaml
 │ ├── part_summary.md # <-,
 │ ├── resume.html # +-- sources
 │ ├── resume.md # <-'
 │ └── resume.pdf # <- end result (-> screeenshot)

 ├── build* # sources | j2pp.py | panoc | weasyprint
 ├── css/

 │ ├── boxicons.min.css
 │ ├── normalize.css
 │ └── styles.css

 ├── fonts/
 │ ├── boxicons.ttf
 │ └── boxicons.woff2

 ├── img/
.

 ├── pandoc/
 │ └── template.html

 └── parts/
 ├── en/
 │ ├── experience_empl01.md
 │ ├── experience_empl02.md
 │ ├── experience_empl03.md
 │ ├── part_certifications.md
 │ ├── part_contact.md
 │ ├── part_education.md
 │ ├── part_experience.md
 │ ├── part_languages.md
 │ ├── part_skills.md
 │ └── part_top_skills.md
 └── nl/

Version control

● Makes sense for many types of
documents, may not for others

● Exact control:
– Content
– History of modifications
– Easy and precise roll-backs

● Collaboration
– Issue tracking
– Rigorous review process

● Multiple concurrent versions
(with branching)

● Release management
(for the important stuff)
– What date
– Which issues
– Exact content

● Git based (self-) hosted products:
– Gitea : (self-) hosted
– Gitlab : (self-) hosted
– Github : hosted only

https://gitea.com/
https://gitlab.com/
https://github.com/

Demo:

Collaboration workflow

Pandoc

tmpl
Repo

tmpl

CSS for

printed media

CSS for

web

Custom
HTML

template

● Branching
● Pull/Merge Request
● Review process
● Merge

Collaboration2

● Local templates
● Local editor
● Personal tooling and

preferences

Content creation1

● Multi-stage pipeline
● Shared templates + CSS

for HTML
● Auxiliary CSS for printed

media
● (publishing)

CI/CD Pipeline3

Demo:

Publish documentation as a website
.gitlab-ci.yml – source: https://gitlab.com/gnyers/demo-dac-simple-wf/

stages:

 - convert

 - publish

convert_markdown:

 stage: convert

 image:

 name: pandoc/core:3.7-alpine

 entrypoint: ["/bin/busybox", "sh", "-c"]

 script:

 - apk add --no-cache weasyprint ttf-freefont font-noto terminus-font font-awesome font-ubuntu-mono-nerd
font-ubuntu-nerd

 - fc-cache -f -v

 - mkdir -p output/pdf

 - for file in src/*.md; do

 export html=$(basename "${file%.md}.html");

 pandoc "$file" -s -o "output/$html";

 done

 - for file in output/*.html; do

 export pdf=$(basename "${file%.html}.pdf");

 weasyprint "$file" "output/pdf/$pdf";

 done

 artifacts:

 paths:

 - output/*.html

 - output/pdf/*.pdf

publish:

 pages:

 # The folder that contains the files to be exposed at the Page URL

 publish: public

 stage: publish

 script:

 - mkdir public/

 - mv output/* public/

 artifacts:

 paths:

 - public

 only:

 - main # Change this to your default branch if it's not 'main'

● Repo
● Gitlab CI/CD pipeline
● Features:

– pandoc/core Docker image
– Installs weasyprint
– Using pandoc converts all

Markdown documents to
HTML

– With weasyprint converts all
HTML documents to PDF

– Publishes results as static
website using Gitlab pages

https://gitlab.com/gnyers/demo-dac-simple-wf/
https://gitlab.com/gnyers/demo-dac-simple-wf/pages

Demo:

DaC tools in a container
● Pandoc Dockerfiles@GitHub

– pandoc/minimal
– pandoc/core
– pandoc/latex
– pandoc/extra

● VScode in a container
– Local containerized Vscode via the

browser

● DaC Tools
– Based on pandoc/core
– Adds:

● Git (CLI), Jinja, WeasyPrint+fonts

$ cd demo-dac-container
$ docker build -t dac-tools .
$ docker run --rm -it dac-tools

https://github.com/pandoc/dockerfiles
https://hub.docker.com/r/pandoc/minimal
https://hub.docker.com/r/pandoc/core
https://hub.docker.com/r/pandoc/latex
https://hub.docker.com/r/pandoc/extra
https://github.com/linuxserver/docker-code-server

Summary

Why treat documentation as
code?
● Productivity
● Collaboration
● Control
● Automation

Tools and technologies:
● Markdown, VIM, VScode
● Gitea, Gitlab, Github
● Jinja2, CSS, Pandoc, WeasyPrint
● Sphinx, MkDocs, Docusaurus, ...

Going further:
● Diagrams from plain text:

– Mermaid or PlantUML

● How about publishing to:
– Confluence, XWiki, Sharepoint or

WordPress?

● Hybrid documents
– Incorporate external content into

documentation build
– Text snippets, images, tables from

external source, e.g. REST API,
Confluence

https://mermaid.js.org/ecosystem/tutorials.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Concepts
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	DaC Workflow
	Tools & Technologies
	DaC Workflow – tools & technologies
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Demo: Useful editor features
	Pandoc
	Demo: Simple workflow HTML
	Slide 23
	Demo: Simple workflow PDF
	Slide 25
	Slide 26
	Demo: Jinja2 templating
	Slide 28
	Slide 29
	Demo: Collaboration workflow
	Demo: Publish documentation as a website
	Demo: DaC tools in a container
	Slide 33

