Q) TiDB

TiDB: under thé:ﬁboql

An introduction to distributed databas

NLUUG vj 2025, Utrecht, Daniél van Eeden e

AGENDA

a« lntroduction
History
Distributed databases

Building blocks
s Conclusion

o

N

o

w

S
»

Daniél van Eeden

Working for PingCAP, the
company behind TiDB.

Previously working as a MySQL
DBA for Booking.com

Active in the open source
community as contributor to:
DBD:mysql, go-mysql, Wireshark,
TiDB, MySQL, and more.

http://booking.com

02 History

Let's start with some history

Databases were created to give an abstraction
between the storage of data and the processing of

data.
Applications no longer needed to know how the data

was stored on disk (or any other medium)

Let's start with some history

Most databases provide network access to allow
multiple application instances to work with the same
dataset.

This brings the need for transactions, isolation and
atomicity to make sure the data is consistent logical
and physical state.

/ 6

Let's start with some history

e SQL has emerged as the standard language for
querying databases.

e Especially with sqlite being used in many desktop
and mobile applications

Let's start with some history

e Databases were often
o Monolithic
o Single server

o Expensive and special hardware
m Multi CPU, lots of memory
m Redundancy (Disk, network, etc)

Let's start with some history

e Next steps
o Multiple machines with shared storage for failover
o A standby instance (MySQL replica, Oracle Data Guard)

o Drawbacks:
m need for special hardware (shared storage)
m failover is manual
m makes maintenance more difficult

Let's start with some history

e Scaling for web 2.0
o MySQL with multiple read-only replicas
o Drawbacks
m Replication delay

m Applications need to do read/write splitting
m Failover is still manual

Let's start with some history

e NoSQL

MongoDB with sharding

Easier to get both read and write scalability
Developers already know JSON

Easier to work with structured data ("documents")

Drawbacks:
m Duplicating data
m Analytics can be challenging

O O O O O

Let's start with some history

Sharding

Store users with an even userID on hostA and users with
an odd userID on hostB.

Now there are two shards.

Double the write capacity.

Drawbacks:

@)

Need to decide the sharding key (userID in this example) for

each table.

The application needs to be sharding aware.

What if one user becomes really popular?

Instead of even/odd, you can use userID %4 or something

similar. But increasing the number of shards or merging them
becomes hard.

Analytics needs a lot of custom work.

A backup no longer provides an atomic snapshot of the total
database.

Let's start with some history

e NewSQL
o Response to NoSQL
o Good JSON support
o Sometimes with support for different query
languages/protocols
o Might have some sharding functionality

03 Distributed databases

Distributed databases

Store a database on a set of
machines instead of on a single
machine.

Present the database to
applications as a single logical
database.

Distributed databases

e Monolithic database
o Every machine stores a full copy of
the database
o More machines means more
copies.

e Distributed database
o Every machine stores a part of the
database
o More machines means more
capacity.

/ 16

Distributed databases

Redundancy

©)

Every part of the database is
stored multiple times in the
cluster.

Every host is labeled with the
availability zone.

The cluster makes sure that the 3
copies are stored on machines in
separate availability zones.

PD cluster

I Metadata

I

TSO/Data location

Storage cluster

[000304d TOSAIN

BIA uoljeol|ddy

/ 18

0« Building blocks

Building blocks

TiKV

o RocksDB

o Raft
PD

o TSO (Time Stamp Oracle)
TiDB

o SQL processing

o Query pushdown
TiFlash

/ 20

Building blocks: TiKV

e Key-value store
Can be used by applications
directly.

e This is a CNCF (Cloud Native

Computing Foundation) project.

e Written in Rust

/ 21

Data organization within TiDB

e ForarowinaTable, row data is encoded in key-value pairs with the format below:

t<tablelD>_r<rowlD> => [col1, col2, col3, col4]

e IFthereis secondary index with a column, the index data of a row is encoded in this way:

t<tablelD>_i<indexID>_indexedColumnsValue => rowlD

Or
t<tablelD>_i<indexID>_indexedColumnsValue_rowlD => nil

Data organization

within TiDB

1

daniel

CREATE TABLE user_table (

id INT,

name VARCHAR(64),
email VARCHAR(1024),
PRIMARY KEY(id)

);

daniel.van.eeden@pingcap.com

2

foo

bar@pingcap.com

Within TiKV:

t101_r1 => [1,daniel,daniel.van.eeden@pingcap.com]
t101_r2 =>[2, foo, bar@pingcap.com]
t101_r...=> ...

Data organization

within TiDB

CREATE TABLE user_table (

id INT,

name VARCHAR(64),
email VARCHAR(1024),

KEY (name),

PRIMARY KEY(id)

);

1 daniel daniel.van.eeden@ping
cap.com
2 foo bar@pingcap.com

Within TiKV:

t101_r1 => [1,daniel,daniel.van.eeden@pingcap.com]
t101_r2 =>[2, foo, bar@pingcap.com]
t101_...=> ..

£101_i1_daniel_1 => nil
£101_i1_foo_2 => nil
£E101_i1_...=> ...

Building blocks:
RocksDB

e Used by TiKV

o [SM-Tree
o Log Structured Merge Tree
o Sequential writes
o Sorted during compaction
o Good compression
o Deletes via tombstones

e Benefits to TiKV/TiDB

o FLASHBACK TABLE <table>

o Allows you to read older versions
of the table data
o Good INSERT performance

'red> 'rd> sorfed>
NN
[T TT T T T T T — Level 2
sor'red>

Compaction continues creating fewer, larger and larger files
Source: Wikipedia

Building blocks: Raft

e FEach data region (part of a table)
Is a raft group

e Raft provides group consensus
(e.g. leader election)

e Raftlogis used to replicate data

l Data

Raft [€&—>

Raft |€&—»

Raft

raft log
Data

raft log
Data

RocksDB

Data

RocksDB

RocksDB

| Data | Data ‘ Data

Building blocks: PD

e Placement Driver

e Usually a set of 3 machines

e This is orchestrating placement
of data

e Distribute data regions (raft

groups) in such a way that
o Capacity use is balanced
o Readl/Ois balanced
o Write l/O is balanced
o Raftleaders are balanced

/ 27

TiIDB Architecture

SELECT id FROM
orders WHERE
id=1000001

1000001

Stateless SQL Layer

TiDB node 1

TiDB node 2

TiDB node 3 [

TiDB node 4

1 Region 3

AZ 1
TiKV node 1

Region 5

AZ 2
TiKV node 2

Region 1

m Region3

Region 4

TiKV node 4

Region 6

)
s 1
]
]

TiKV node 5

Region 5

Region 4

TiKV node 6

Region 6

Region 1

TiKV node 7
Region 1

Region 4

TiKV node 8

Region 6

,_\
—

TiKV node 9
Region 3

Region 5

=

Building blocks: TiDB

e Provides MySQL protocol
support

e Provides MySQL syntax support
Doesn't store data. Data is
stored on TiKV.

e Communicates with TiKV in
order to fulfil client requests

e This componentis writtenin Go

/ 29

PD cluster

I Metadata

I

TSO/Data location

Storage cluster

[000304d TOSAIN

BIA uoljeol|ddy

/ 30

Query Execution/Distributed Computing

SELECT COUNT(*) FROM t WHERE id > 10 AND c2 = 'foo';

Physical Plan on TiDB

Final Aggregate

SUM(COUNT(")
‘ COUNT(Y)
DistSQL Scan
PN
COUNT(Y)
COUNTL)
\ T\COUNT(*)

TiKV

TiKV \

TiKV

Physical Plan on TiKV Coprocessor

Partial Aggregate
COUNT(*)

|

Filter
c2 = 'foo'

TableScan
Range: id(10, +o0)

Building blocks: TSO

Time Stamp Oracle
TSO is part of PD
Gives out timestamps

o 1stpart
m UNIX timestamp in milliseconds
m 46 bits
o 2nd part
m Logical timestamp
m 18 bits

logical part is needed for
o multiple requests in the same
millisecond
o clock adjustments etc

/ 32

Building blocks: TSO

e timestamps are used for

@)

O O O O

Transaction start time
Transaction commit time
Locking

Transaction isolation

KV records

/ 33

Building blocks:
TiFlash

e Stores acopy of atableina
columnar format.

e Not all tables have to have a copy
in TiFlash
Written in C++
Receives data asynchronously as
a raft learner.

/ 34

Building blocks:
TiFlash

e The optimizer in TiDB is allowed to
use TiFlash for queries or parts of
queries.

e Optimizer hints are available to
restrict or force the use of TiFlash

e Data from TiFlash is guaranteed to
be transactionally consistent.

/ 35

PD cluster

I Metadata

I

TSO/Data location

[000304d TOSAIN

BIA uoljeol|ddy

S
]
-
2}
=
(6]
]
(@]
©
St
[®]
+—
n

/ 36

Miscellaneous: BR

External

storage

External
storage

°® B ac ku p & Resto re Data \ Backup cluster Data Restore cluster

o Using S3 (or compatible). T,KV T.KV
Shared filesystems like NFS also
o B £

work.
Centrally controlled

o Every TiKV writes its own part of
the baCkup br backup xxx brrestore xxx

o Relies on LSM Tree properties to 5 :
make a consistent backup n =

/ 37

Miscellaneous: TiCDC

Change Data Capture
Target
o Kafka
o MysSQL
o TiDB
e Connects to TiKV to read
changes.
e HA

/ 38

Miscellaneous: DM

e Data Migration

e Read data from MySQL
o Initial copy (in parallel)
o Binlogs

e Write to TiDB

/ 39

Future

Cloud Storage Engine

Put data on S3

The TiKV machines cache data
Adding or removing nodes no
longer requires the copying of
data.

Scaling up or down is nearly
instantaneous

/ 40

s Conclusion

Conclusion

e Distributed databases provide
you with
o Scalability
o High availability
e Distributed are developer
friendly
o No replication delay
o No read/write splitting needed
o No sharding needed

Y

Questions?
Daniel.van.Eeden@pingcap.com N W
https://docs.pingcap.com) - .
e Try for yourself - o
o TiUP Playground: https://tiup.io P) \
o OrTiDB Cloud ’ T~

e https://labs.tidb.io/ e

"/ a3

mailto:Daniel.van.Eeden@pingcap.com
https://docs.pingcap.com/
https://tiup.io
https://labs.tidb.io/

