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Who is Klaas van Gend?

Age: 51

Lives near Eindhoven, NL

▪ C experience since 1990

▪ C++ experience since 1997

▪ NLUUG honorary member

▪ Currently working with a Swiss 

customer
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Senior Software Architect

Trainer Multicore 

Programming in C++



C++20 example

C++ algorithms incl parallel options

Enforcing patterns through libraries

Plan your concurrency: Parallel Patterns

Theodorescu’s critique on
C++ parallel algorithms
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Refresher: 
C++11 up to C++20 

Parallelism and Concurrency only
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C++11 std::thread 
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std::thread
• Must be join()ed

• join() will wait for thread completion

• Thread destructor abort()s if not joined

After 20 sec,

Press ctrl-C
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C++20 Features 
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std::jthread with std::stop_token
Upon destruction, will raise the stop_token

std::condition_variable_any honors stop token

Thus thread ends nicely

After 4 sec, application ends, all 

remaining values printed.



C++17’s
parallel algorithms

Free speedups?
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C++ Algorithms – sieve of Eratosthenes
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2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

• Dividable by 2

• Dividable by 3

• Dividable by 5 Only need to go to 

floor(sqrt(max))

• Dividable by 4

Only need to do 

established primes

2 3 5 7

11 13 17 19

Source: Wikipedia, public domain
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C++ Algorithms – naïve sieve code
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For 1000k sieve: 17.8 s (!) For 1000k sieve: 356 ms
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C++ Algorithms – sieve code + std algorithms

10

For 1000k sieve: 17.8 s For 1000k sieve: 165 ms 108x
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Sieve – further optimizations?

▪ Code also tests 4, 6, 8, 9, 

etc…

▪ We can win quite some 

iterations!

▪ Benefit:   

1000k elements: 41 ms

▪ C++17’s   

std::execution::par  ???
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434x
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std::execution::par_unseq and friends

std::vector<int> data {9, 3, 6, 4, 2, 6, 8, 1, 1};

std::sort( data.begin(), data.end());

std::sort(std::execution::seq,       data.begin(), data.end());

std::sort(std::execution::par,       data.begin(), data.end());

std::sort(std::execution::unseq,     data.begin(), data.end());

std::sort(std::execution::par_unseq, data.begin(), data.end());

12

Never run 

concurrently

Can be 

parallelized

Can be run 

out of order 

Also known as 

“embarrassingly parallel”

693x
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Improvements so far

approach time speedup

Std::list with erase() 17800 ms 1x

Std::vector with copies 356 ms 50x

Use std algorithms 165 ms 108x

Only test for primes 41 ms 434x

Use concurrent algorithms 25.7 ms 693x
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Wait… Using 12 cores instead of 1.

But only 1.6x faster?

Is C++17 concurrency worth it?



Critique on C++17’s
std::execution::par

Paraphrasing Lucian Teodorescu
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Critique

▪ By Lucian Radu Teodorescu

▪ Overload #161, February 2021

▪ 1 of 2 magazines of ACCU

▪ Association for Programmers

▪ Famous for the ACCU conference

▪ Europe’s premier C++ conference
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Lucian’s major critique

▪ Applications have more than just algorithms

▪ Multiple algorithms introduce serial behavior when combined

▪ Small datasets are not good for parallelization

▪ Cannot tune the algorithms

▪ More work to finish faster

And:

▪ Algorithms usually cannot monopolize the CPU
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Example code 
to underpin Lucian’s critique 

▪ Example from HTI course “multicore 

programming in C++”

▪ Render differential equation 

using ‘vector balls’

▪ Example downloadable from:

https://gitlab.com/kaa-chingSX/showcase-parallel-transform

(QR code at end of presentation)
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https://gitlab.com/kaa-chingSX/showcase-parallel-transform
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Main “3D” algorithm in “Vector Balls”
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Rotate all points around 

vertical axis

“Painter’s algorithm”: 

sort based on depth

3D -> 2D conversion
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▪ Uses libSDL 1.2 to 

draw the ball bitmaps

▪ 1M+ balls to draw

▪ Various optimizations 

explored in exercise
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Theodorescu’s critique:

- Applications have more than just algorithms
- Multiple algorithms introduce serial behavior when combined 

▪ 3 algorithms

▪ Barriers in between the algorithms

▪ All threads wait for slowest  <= waste

▪ Drawing of all points is separate

▪ Roughly as expensive as the calculations

▪ Speeding up algorithms infinitely

only gives 2x total speedup

▪ Amdahl’s Law!
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Theodorescu’s critique: 

- Small datasets are not good for parallelization
- Cannot tune the algorithms

▪ Optimal:

▪ Big Chunks of Work

▪ Many Chunks of Work

▪ Either is OK, Both is better

▪ Theodorescu:

- “Cannot tune the algorithms”

▪ This is partially correct:

▪ Std suggest parallelize > 500 counts

▪ But if element size is big enough, count is 

less relevant

▪ Programmers have no influence at all

21
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Theodorescu’s critique:

- More work to finish faster

▪ Overhead starting/stopping threads*

▪ Overhead barriers

▪ Higher speed, much more power consumption

▪ Is it worth it?
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Wait… Using 12 cores instead of 1.

But only 1.6x faster?
From earlier slide →



© High Tech Institute | Sioux Technologies

- Algorithms usually cannot monopolize the CPU
(Additional to Lucian’s critique)

▪ Multicore Embedded Systems

▪ Usually do not have “spare/idle cores”

▪ They are planned for other teams / processes

▪ You may not have the option to use concurrency

23



Plan your concurrency:
use parallel patterns

(and don’t invent libraries to implement those yourself)
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Threadsafe

Queue

Pattern example 1: 
Task Queue 
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Thread Pool

Tasks

“partitioning”

Task Results may become new tasksThis is how OpenMP and OneTBB work internally.

Conversion from flow to tasks is done by annotations.
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Pattern Example 2:
Kahn Process Network

▪ Code in a node follows 

defined pattern 

▪ Guaranteed always progress

▪ Clear design to newcomers

▪ Slowest node is always 

performance bottleneck
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Original mathematical proof with 

infinite queues on all edges.
Each node contains one thread.



© High Tech Institute | Sioux Technologies

Pattern example 3:
Algorithm:  Monte Carlo-approach
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An approach to calculate Pi:

• Throw darts at a unity square

• For each point: 

• calculate distance to center

• distance < 1 ? inside : outside

• Pi ≈ 4
# 𝑖𝑛𝑠𝑖𝑑𝑒

#𝑜𝑢𝑡𝑠𝑖𝑑𝑒

▪ All experiments are independent

▪ All experiments use random input

Thus “embarrassingly parallel”
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OpenMP

▪ Annotate code with pragmas:

#pragma omp parallel for

for (auto c : candidates)

{ do work in parallel here }

▪ Needs compiler support

Notably Visual Studio is lagging!

▪ Compile without OpenMP results 
in sequential code

▪ Also allows offloading of blocks to 
GPUs or FPGAs

▪ Industry consortium

▪ Around since late 90s

OneAPI OneTBB

▪ C++ library

Supports all major compilers

▪ Needs code transformations 
similar to C++ algorithms

▪ Is used by gcc 12.1 to implement 
parallel algorithms

▪ Fully open sourced (github)

▪ Intel-supported

▪ Around since early 2000s

Plain C++ (DIY)

▪ Implement abstractions or all of
your code will contain locks and 
asyncs

▪ Hard to maintain

▪ Do you have good unit tests?

▪ Do you have a sequential “golden 
standard” to compare results 
against?

▪ Supported by you only?

Don’t implement your own library!

28
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Summary

2929
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Summary

▪ Is multithreading in C++ hard?

▪ Not anymore, is standardized now

▪ Getting it right is still hard

▪ C++17 brings parallelized algorithms

▪ Be careful with performance expectations!

▪ Parallel patterns have seen a lot of research

▪ See the paper for links to books

▪ There’s also a training course!

30

Not an excuse to roll your own, use 

a library to abstract threading away

Gitlab repo with 

paper and slides

Multicore 

Programming 

Training course
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Questions?

▪ Is multithreading in C++ hard?

▪ Not anymore, is standardized now

▪ Getting it right is still hard

▪ C++17 brings parallelized algorithms

▪ Be careful with performance expectations!

▪ Parallel patterns have seen a lot of research

▪ See the paper for links to books

▪ There’s also a training course!
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Not an excuse to roll your own, use 

a library to abstract threading away

klaas.van.gend@sioux.eu

Gitlab repo with 

paper and slides

Multicore 

Programming 

Training course
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