
Parallelization of C++ code
easy or not?

May 21, 2024Klaas van Gend

© High Tech Institute | Sioux Technologies

Who is Klaas van Gend?

Age: 51

Lives near Eindhoven, NL

▪ C experience since 1990

▪ C++ experience since 1997

▪ NLUUG honorary member

▪ Currently working with a Swiss

customer

2

Senior Software Architect

Trainer Multicore

Programming in C++

C++20 example

C++ algorithms incl parallel options

Enforcing patterns through libraries

Plan your concurrency: Parallel Patterns

Theodorescu’s critique on
C++ parallel algorithms

3© Sioux Technologies | Confidential

Refresher:
C++11 up to C++20

Parallelism and Concurrency only

© High Tech Institute | Sioux Technologies

C++11 std::thread

5

std::thread
• Must be join()ed

• join() will wait for thread completion

• Thread destructor abort()s if not joined

After 20 sec,

Press ctrl-C

© High Tech Institute | Sioux Technologies

C++20 Features

6

std::jthread with std::stop_token
Upon destruction, will raise the stop_token

std::condition_variable_any honors stop token

Thus thread ends nicely

After 4 sec, application ends, all

remaining values printed.

C++17’s
parallel algorithms

Free speedups?

© High Tech Institute | Sioux Technologies

C++ Algorithms – sieve of Eratosthenes

8

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

• Dividable by 2

• Dividable by 3

• Dividable by 5 Only need to go to

floor(sqrt(max))

• Dividable by 4

Only need to do

established primes

2 3 5 7

11 13 17 19

Source: Wikipedia, public domain

© High Tech Institute | Sioux Technologies

C++ Algorithms – naïve sieve code

9

For 1000k sieve: 17.8 s (!) For 1000k sieve: 356 ms

© High Tech Institute | Sioux Technologies

C++ Algorithms – sieve code + std algorithms

10

For 1000k sieve: 17.8 s For 1000k sieve: 165 ms 108x

© High Tech Institute | Sioux Technologies

Sieve – further optimizations?

▪ Code also tests 4, 6, 8, 9,

etc…

▪ We can win quite some

iterations!

▪ Benefit:

1000k elements: 41 ms

▪ C++17’s

std::execution::par ???

11

434x

© High Tech Institute | Sioux Technologies

std::execution::par_unseq and friends

std::vector<int> data {9, 3, 6, 4, 2, 6, 8, 1, 1};

std::sort(data.begin(), data.end());

std::sort(std::execution::seq, data.begin(), data.end());

std::sort(std::execution::par, data.begin(), data.end());

std::sort(std::execution::unseq, data.begin(), data.end());

std::sort(std::execution::par_unseq, data.begin(), data.end());

12

Never run

concurrently

Can be

parallelized

Can be run

out of order

Also known as

“embarrassingly parallel”

693x

© High Tech Institute | Sioux Technologies

Improvements so far

approach time speedup

Std::list with erase() 17800 ms 1x

Std::vector with copies 356 ms 50x

Use std algorithms 165 ms 108x

Only test for primes 41 ms 434x

Use concurrent algorithms 25.7 ms 693x

13

Wait… Using 12 cores instead of 1.

But only 1.6x faster?

Is C++17 concurrency worth it?

Critique on C++17’s
std::execution::par

Paraphrasing Lucian Teodorescu

14

Critique

▪ By Lucian Radu Teodorescu

▪ Overload #161, February 2021

▪ 1 of 2 magazines of ACCU

▪ Association for Programmers

▪ Famous for the ACCU conference

▪ Europe’s premier C++ conference

© High Tech Institute | Sioux Technologies

Lucian’s major critique

▪ Applications have more than just algorithms

▪ Multiple algorithms introduce serial behavior when combined

▪ Small datasets are not good for parallelization

▪ Cannot tune the algorithms

▪ More work to finish faster

And:

▪ Algorithms usually cannot monopolize the CPU

16

© High Tech Institute | Sioux Technologies

Example code
to underpin Lucian’s critique

▪ Example from HTI course “multicore

programming in C++”

▪ Render differential equation

using ‘vector balls’

▪ Example downloadable from:

https://gitlab.com/kaa-chingSX/showcase-parallel-transform

(QR code at end of presentation)

17

https://gitlab.com/kaa-chingSX/showcase-parallel-transform

© High Tech Institute | Sioux Technologies

Main “3D” algorithm in “Vector Balls”

18

Rotate all points around

vertical axis

“Painter’s algorithm”:

sort based on depth

3D -> 2D conversion

© High Tech Institute | Sioux Technologies

▪ Uses libSDL 1.2 to

draw the ball bitmaps

▪ 1M+ balls to draw

▪ Various optimizations

explored in exercise

19

© High Tech Institute | Sioux Technologies

Theodorescu’s critique:

- Applications have more than just algorithms
- Multiple algorithms introduce serial behavior when combined

▪ 3 algorithms

▪ Barriers in between the algorithms

▪ All threads wait for slowest <= waste

▪ Drawing of all points is separate

▪ Roughly as expensive as the calculations

▪ Speeding up algorithms infinitely

only gives 2x total speedup

▪ Amdahl’s Law!

20

© High Tech Institute | Sioux Technologies

Theodorescu’s critique:

- Small datasets are not good for parallelization
- Cannot tune the algorithms

▪ Optimal:

▪ Big Chunks of Work

▪ Many Chunks of Work

▪ Either is OK, Both is better

▪ Theodorescu:

- “Cannot tune the algorithms”

▪ This is partially correct:

▪ Std suggest parallelize > 500 counts

▪ But if element size is big enough, count is

less relevant

▪ Programmers have no influence at all

21

© High Tech Institute | Sioux Technologies

Theodorescu’s critique:

- More work to finish faster

▪ Overhead starting/stopping threads*

▪ Overhead barriers

▪ Higher speed, much more power consumption

▪ Is it worth it?

22

Wait… Using 12 cores instead of 1.

But only 1.6x faster?
From earlier slide →

© High Tech Institute | Sioux Technologies

- Algorithms usually cannot monopolize the CPU
(Additional to Lucian’s critique)

▪ Multicore Embedded Systems

▪ Usually do not have “spare/idle cores”

▪ They are planned for other teams / processes

▪ You may not have the option to use concurrency

23

Plan your concurrency:
use parallel patterns

(and don’t invent libraries to implement those yourself)

© High Tech Institute | Sioux Technologies

Threadsafe

Queue

Pattern example 1:
Task Queue

25

Thread Pool

Tasks

“partitioning”

Task Results may become new tasksThis is how OpenMP and OneTBB work internally.

Conversion from flow to tasks is done by annotations.

© High Tech Institute | Sioux Technologies

Pattern Example 2:
Kahn Process Network

▪ Code in a node follows

defined pattern

▪ Guaranteed always progress

▪ Clear design to newcomers

▪ Slowest node is always

performance bottleneck

26

Original mathematical proof with

infinite queues on all edges.
Each node contains one thread.

© High Tech Institute | Sioux Technologies

Pattern example 3:
Algorithm: Monte Carlo-approach

27

An approach to calculate Pi:

• Throw darts at a unity square

• For each point:

• calculate distance to center

• distance < 1 ? inside : outside

• Pi ≈ 4
𝑖𝑛𝑠𝑖𝑑𝑒

#𝑜𝑢𝑡𝑠𝑖𝑑𝑒

▪ All experiments are independent

▪ All experiments use random input

Thus “embarrassingly parallel”

© High Tech Institute | Sioux Technologies

OpenMP

▪ Annotate code with pragmas:

#pragma omp parallel for

for (auto c : candidates)

{ do work in parallel here }

▪ Needs compiler support

Notably Visual Studio is lagging!

▪ Compile without OpenMP results
in sequential code

▪ Also allows offloading of blocks to
GPUs or FPGAs

▪ Industry consortium

▪ Around since late 90s

OneAPI OneTBB

▪ C++ library

Supports all major compilers

▪ Needs code transformations
similar to C++ algorithms

▪ Is used by gcc 12.1 to implement
parallel algorithms

▪ Fully open sourced (github)

▪ Intel-supported

▪ Around since early 2000s

Plain C++ (DIY)

▪ Implement abstractions or all of
your code will contain locks and
asyncs

▪ Hard to maintain

▪ Do you have good unit tests?

▪ Do you have a sequential “golden
standard” to compare results
against?

▪ Supported by you only?

Don’t implement your own library!

28

© High Tech Institute | Sioux Technologies

Summary

2929

© High Tech Institute | Sioux Technologies

Summary

▪ Is multithreading in C++ hard?

▪ Not anymore, is standardized now

▪ Getting it right is still hard

▪ C++17 brings parallelized algorithms

▪ Be careful with performance expectations!

▪ Parallel patterns have seen a lot of research

▪ See the paper for links to books

▪ There’s also a training course!

30

Not an excuse to roll your own, use

a library to abstract threading away

Gitlab repo with

paper and slides

Multicore

Programming

Training course

© High Tech Institute | Sioux Technologies

Questions?

▪ Is multithreading in C++ hard?

▪ Not anymore, is standardized now

▪ Getting it right is still hard

▪ C++17 brings parallelized algorithms

▪ Be careful with performance expectations!

▪ Parallel patterns have seen a lot of research

▪ See the paper for links to books

▪ There’s also a training course!

31

Not an excuse to roll your own, use

a library to abstract threading away

klaas.van.gend@sioux.eu

Gitlab repo with

paper and slides

Multicore

Programming

Training course

	Slide 1: Parallelization of C++ code easy or not?
	Slide 2: Who is Klaas van Gend?
	Slide 3
	Slide 4: Refresher: C++11 up to C++20
	Slide 5: C++11 std::thread
	Slide 6: C++20 Features
	Slide 7: C++17’s parallel algorithms
	Slide 8: C++ Algorithms – sieve of Eratosthenes
	Slide 9: C++ Algorithms – naïve sieve code
	Slide 10: C++ Algorithms – sieve code + std algorithms
	Slide 11: Sieve – further optimizations?
	Slide 12: std::execution::par_unseq and friends
	Slide 13: Improvements so far
	Slide 14: Critique on C++17’s std::execution::par
	Slide 15: Critique
	Slide 16: Lucian’s major critique
	Slide 17: Example code to underpin Lucian’s critique
	Slide 18: Main “3D” algorithm in “Vector Balls”
	Slide 19
	Slide 20: Theodorescu’s critique: - Applications have more than just algorithms - Multiple algorithms introduce serial behavior when combined
	Slide 21: Theodorescu’s critique: - Small datasets are not good for parallelization - Cannot tune the algorithms
	Slide 22: Theodorescu’s critique: - More work to finish faster
	Slide 23: - Algorithms usually cannot monopolize the CPU (Additional to Lucian’s critique)
	Slide 24: Plan your concurrency: use parallel patterns
	Slide 25: Pattern example 1: Task Queue
	Slide 26: Pattern Example 2: Kahn Process Network
	Slide 27: Pattern example 3: Algorithm: Monte Carlo-approach
	Slide 28: Don’t implement your own library!
	Slide 29: Summary
	Slide 30: Summary
	Slide 31: Questions?

