The journey to Opensource networking with OpenBSD @AS15693

Introduction

Network Designer, AS15693, BusinessConnect BV Network Designer at KPN, AS1136 via Routz

Experience:

- ~10 years of experience with FreeBSD
- >20 years of experience with Linux
- >20 years of experience in networking with multiple vendors

Network topology and layers

Multivendor network: Cisco (multiple series), Brocade VDX, Juniper MX series

The challenge in 2021

- Juniper MX104 border routers using multiple full-tables (IPv4 and IPv6)
- Slow CPU (PowerPC), 32 bits OS and too many tasks to fulfill
- Memory leak issues with 4G RAM
- Lack of 10G interfaces and workarounds
- New hardware based router platforms are too expensive

Research on (cheaper) alternatives

- Using x86 servers, either bare-metal or virtualization or a combination of it
- Network Interface Cards and *wdm/grey optics compatibility
- Opensource OS, either Linux or *BSD based
 - Important topics
- Security and hardening
- Network requirements

Network Requirements

- OSPF as an IGP for IPv4 and IPv6
- BGP: IPv4- and IPv6 unicast, VPNv4 and VPNv6 support
- BGP: Inband route-reflector
- BGP: Support for multiple full-tables (IPv4/IPv6)
- BGP: RPKI Route Origin Validation support, RTR support
- MPLS applications: L3VPN and L2VPN, using LDP
- VRF-Lite for out-of-band management
- PPPoA/PPPoE termination
- 1G or 10G ports and optics (SX/LX, SR/LR), LACP
- 15-20 Gb/s (internal- and external traffic)
- Netflow/IPFix support

Results of the research and choices

- Using x86 servers \rightarrow HP Gen-10 servers, 32 CPU's and 256G memory
- Operating System to run on bare-metal
- Dedicated server to fulfill the service of full-table internet routing and routing security
- Operating System to be used: OpenBSD and plan B
- Multiple Intel X710 quad cards

- Accepting that this will take time to build and test
- Accepting risk of using opensource software

Testbed

- We created a testbed using multiple Cisco 1800, 2800 and 7200 series together with Juniper vMX and 10G switches.
- Virtual machines in Proxmox to create and verify flows/capturing traffic
- This was not a full lab representing the production environment.

Goal of testing

• Does OpenBSD meet our expectations/requirements?

- Familiarize with the OS, reading documentation and public presentations
- Verify if all hardware is detected and working
- Verify in- and outbound routing policy and RPKI ROV
- Verification of the packet filters, flow testing
- Operability testing between other vendors for OSPF, LDP and MP-BGP
- Traffic/throughput testing
- ~100 testcases were defined and tested

Conversions

- Interfaces
- Routing services
- Routing policy
- IP-filters

Interface conversion

,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

ent ixl0 txprio packet rxprio outer

coselect (10GbaseLR full-duplex)

inet 193.239.117.46 netmask 0xfffffc00 broadcast 193.239.119.25 inet6 fe80::42a6:b7ff:fe51:bf10%vlan7 prefixlen 64 scopeid 0x14

2001:7f8:13::a501:5693:1 prefixlen

lladdr 40:a6:b7:51:bf:10

roups: vlan dfz

status: active

description: Peering: NL-IX [10G] index 20 priority 0 llprio 3

- Interface group renamed from default egress → dfz (default free zone)
 - Group name is used with packet-filtering (pf)
- Examples:
 - trunk0 (multiple physical interfaces as one logical), ixl8+ixl9
 - vlan100 (vlan based interface) on top of the trunk0 interface

Interface conversion - MTU stacking

• Interface MTU is also the L3MTU

Routing daemons – OSPF/LDP

- OSPF and LDP are very basic in features and configuration
- L2VPN interworking only for "ethernet"

OpenBGPD - Routing policy and BGP peers

- The juniper routing policy was easy to convert
- The routing policy resulted in less entries with similar functionality
- BGP groups and peers were converted using a python script
- RPKI ROV integration (with rpki-client) is enabled by removing a # from crontab

Routing policy and BGP peer examples

nl-ams-eq-br01:/et	tc\$ doas bgpctl	show grep	cloud		
Cloudflare-v4 #1	13335	579452	355131	0 17w4d07h	3785/20000
Cloudflare-v4 #2	13335	423776	354550	0 02w6d13h	3770/20000
Cloudflare-v4 #3	13335	396452	355131	0 17w4d07h	3763/20000
Cloudflare-v6 #1	13335	377536	355131	0 17w4d07h	380/2000
Cloudflare-v6 #2	13335	366811	354548	0 02w6d13h	376/2000
Cloudflare-v6 #3	13335	374078	355131	0 17w4d07h	359/2000
	1000		255121		2705 /20000

BGP status

<pre># deny RPKI invalid, built by rpki-clien</pre>	t(8), see	root cronta
deny quick from group "transit" ovs inva	lid	
deny quick from group "nlix" ovs invalid		
deny quick from group "eqix" ovs invalid		
#deny ASPA invalid		
deny quick from group "transit" avs inva	lid	
deny quick from group "nlix" avs invalid		
deny guick from group "egix" avs invalid		

Routing policy used for RPKI ROV and ASPA

set localpref 150 neighbor 193.239.116.255 { role rs-client remote-as 34307 enforce neighbor-as no	<pre>#nexthop self for all eBGP neighbors match from ebgp set { nexthop self } Setting nhs</pre>		
<pre>descr "NL-IX RS-v4 #1" max-prefix 180000 } A BGP route-server neighbor with multiple "knobs", hierarchy and ASPA roles</pre>	<pre># Add internal community to transit and IX match from group "nlix" set { community 15693:1000 } match from ebgp AS 24785 set { community 15693:3000 } match from group "eqix" set { community 15693:10000 }</pre>		
	Setting a community		
#do not announce to google on eqix #match to 2001:7f8:83::2:4115:1 set { large-community 24115:0:15169 } #match to 2001:7f8:83::2:4115:2 set { large-community 24115:0:15169 }	<pre># Add rtlabel for advertisements towards bgp pe-ce customers match from ibgp ext-community rt 15693:3 set { rtlabel mgmt }</pre>		
BGP traffic engineering using large communities	VPNv4 policy, set rtlabel to mgmt		
nl-ams-eq-br01:~\$ doas bgpct] show rib table Adj-RIB-In ovs invalid !-? 23.133.8.0/24 217.170.19.66 100 0 24785 6939 !-? 23.133.8.0/24 217.170.19.65 100 0 24785 6939	grep 24785 134823 i 134823 i 945 60326 i		

		2.2	1 2 0	10	0 / 2 /		247	170
RIB-In,	, viev	ving	g RPK	l in	valid ro	outes		

Packet filter (pf)

- Stateful vs stateless filtering?
- Explicit deny, we allow what we think is needed \rightarrow more on this later 3
- Most rules implemented using 'quick' \rightarrow predictable behaviour
- Using lists, tables and macro's in the pf rules
- Similar type of syntax is used in the routing policy

Packet filter (pf) examples

table <martians> { 0.0.0.0/8 10.0.0.0/8 127.0.0.0/8 169.254.0.0/16 172.16.0.0/12 192.0.0.0/24 192.0.2.0/24 224.0.0.0/3 192.168.0.0/16 198.18.0.0/15 198.51.100.0/24 203.0.113.0/24 }

table <martiansv6> { ::/8 0100::/64 2001:2::/48 2001:db8::/32 2002::/16 \ fc00::/7 3ffe::/16 } # Drop packets from non-routable addresses immediately
block in quick on dfz from <martians> to any
block in quick on dfz from <martiansv6> to any

table <bc_prefixes> { 46.183.248.0/21 195.191.120.0/23

Drop packet from our own as space immediately (antispoofing) block in quick on dfz from <bc_prefixes>

#Pass ipsec tunnels and pptp
pass in quick on dfz proto { ah, esp, gre } to <bc_prefixes> no state

#Allow all tcp and udp traffic towards bc prefixes pass in quick on dfz proto { tcp, udp } to <bc_prefixes> no state Combination of a list and table

icmp6_types="{ 1, 2, 3, 128, 129, 135, 136 }" # destination unreachable, packet too big, time exceeded, echo request, echo reply (ping6)

Macro example

pass in quick on dfz inet6 proto ipv6-icmp icmp6-type \$icmp6_types no state

#Allow incoming eBGP sessions on directly connected networks only pass in quick on dfz proto tcp from self:network to self port 179 no state

Block everything else block in log on dfz all block in log on oobmgmt all

Management and security

- Management & Routing domains
- System hardening

Management and Routing domains

- By using r(outing)domains we can create separate routing tables.
- We defined two rdomains:
 - Inband management \rightarrow rdomain 3 (using MPLS L3VPN)
 - Inband management using other IP space → rdomain 4 (using static routes)
 pass in quick on ix12 inet proto tcp from \$trusted_ip to <oob_prefix> port { 2222, 3389 } rtable 4
- IP interfaces are assigned to the rdomain

nl-ams-gs-br01:~\$	netstat -T 3 -rn					
Routing tables						nl-ams-gs-br01:~\$ cat /etc/hostname.vlan4
Internet: Destination default 127.0.0.1 192.168.56/24 192.168.56/24 192.168.194/24	Gateway 192.168.255.254 127.0.0.1 192.168.255.2 195.191.121.248 195.191.121.253	Flags UGS UHl UGS UT UT	Refs Use 0 36076500 0 0 0 10 0 0 1 70618210	Mtu - - - -	Prio Iface 8 vlan4 1 mpe0 8 vlan4 48 mpe0 48 mpe0	rdomain 3 rtlabel mgmt parent trunk0 vnetid 4 inet 192.168.255.239/23 description "Management vlan" !route -T3 -n add default 192.168.255.254 -label mgmt #exchange !route -T3 -n add 192.168.56.0/24.192.168.255.2 -label
192.168.214/24 192.168.224.1/32 192.168.254/23 192.168.254/23	195.191.121.251 195.191.121.250 192.168.255.239 195.191.121.248	UT UT UCn UT	0 23352814 0 0 17 17596803 0 0	- - -	48 mpe0 48 mpe0 4 vlan4 48 mpe0	group mgmt up up and an hull f

Hardening of the system

- OpenBSD is a hardened OS and preaches to be "secure by default"
- Disabling unused default services:
 - Example: slaacd, dhcp-service (client), quotachecks, sndiod disabled
- Services for management \rightarrow isolated in rdomains
- Internet facing servicesInfrastructure IP space

Packet filter

Migrations and upgrades

- Migration attempt highlights
- A migration special
- Caveats after the migration
- Our method of upgrading the system

Migration attempt #1

- Preparation:
 - Patching scheme for the physical cabling
 - Migration order and verification documentation
- We replaced one border router with OpenBSD and ran into several issues
- We were not in control, so we did a rollback and evaluation.

Migration attempt #2

- Fixed issues from attempt #1 in the lab
- Added troubleshooting of pf rules and flows

```
#troubleshooting flows
#tshootip1="{ 47.240.90.48/32 }"
#tshootip2="{ 2a01:8800::25/128 }"
#pass in log quick from $tshootip1 no state
#pass in log quick proto tcp from $tshootip2 no state
```

- Created documentation on how to receive more logging from network services
- De-peering of IPv6
- We were in control! 🙂

Specials.... and 2nd border router migration

- vlan naming/numbering scheme: ixl/trunk number + vlan-id = name of the vlan interface.
 - vlan 4 on ixl8: vlan84, vlan 4 on trunk0: vlan4, veb interface with vlan 4: veb4
 - veb4 has vlan84+vlan4 added as vports
 - One veb was routing within a rdomain for MGMT
 - The amount of interfaces adds up quickly >50

Caveats >1 month

- In OpenBSD 6.9 we could not restart ldpd when bgpd was running with full-tables
- ospf6d network type on interfaces acts unpredictable \rightarrow best results with p2p
- We encountered a bug in the route-reflection of VPNv4
- Reachability issues towards some RPKI repositories

nl-ams-eq-br01:/etc\$ doas route sourceaddr
Preferred source address set for rdomain 0
IPv4: 195.191.121.248
IPv6: 2a01:8800:0:1::1
nl-ams-eq-br01:/etc\$

• Using "doas" on linux machines 🙂

Upgrading the system

- We started with OpenBSD 6.9 stable, new stable is released every 6 months, latest: OpenBSD 7.4
- x86 server and components
- Downgrading
- Countermeasures
- Backup scripts
- Maximum of 1 year behind stable releases

Implemented features and future

- Implementation of Large community support
- Implementation of Multipath routing
- Implementation of BGP Add-path
- Implementation of ASPA validation
- FlowSpec integration in OpenBGPD \rightarrow API available in 7.4
- Sponsoring a public OpenBSD mirror
- Keep reading and contributing to tech@ and bugs@

Conclusion

- This "journey" took us around 6 months
- Building a lab that was production-like was a good move
- Small concessions on the network design and features we used
- Border routers are stable, 4 flawless system upgrades
- We submitted about 5 bug reports, 3 of them were fixed
- Cost effective solution for our requirements
- Exposure to some latest routing security developments like ASPA
- Was it all worth it? \rightarrow YES

My employer Routz for sponsoring this day!

https://routz.nl

Eddy Mouws – CTO

B U S I N E S S C O N N E C T

https://businessconnect.nl