The journey to
Opensource networking with OpenBSD
@AS15693

Introduction

Wouter Prins

Network Designer, AS15693, BusinessConnect BV
Network Designer at KPN, AS1136 via Routz

Experience:

~10 years of experience with FreeBSD

>20 years of experience with Linux

>20 years of experience in networking with multiple vendors

Network topology and layers

aCiESS
: Labelled (MPLS)

BGP PE-CE (v4/v6)

ADN

) <z N
[Transit border Transit
Y
Internet Internet
Exchanges T + Exchanges

Q
Y

Dual datacenter

Multivendor network: Cisco (multiple series), Brocade VDX, Juniper MX series

The challenge in 2021

Juniper MX104 border routers using multiple full-tables (IPv4 and IPv6)
Slow CPU (PowerPC), 32 bits OS and too many tasks to fulfill

Memory leak issues with 4G RAM

Lack of 10G interfaces and workarounds

New hardware based router platforms are too expensive

Research on (cheaper) alternatives

Using x86 servers, either bare-metal or virtualization or a combination of it
Network Interface Cards and *wdm/grey optics compatibility

Opensource OS, either Linux or *BSD based
* Important topics

Security and hardening

Network requirements

Network Requirements

OSPF as an IGP for IPv4 and IPv6

BGP: IPv4- and IPv6 unicast, VPNv4 and VPNv6 support
BGP: Inband route-reflector

BGP: Support for multiple full-tables (IPv4/IPv6)

BGP: RPKI Route Origin Validation support, RTR support
MPLS applications: L3VPN and L2VPN, using LDP
VREF-Lite for out-of-band management

PPPoA/PPPoE termination

1G or 10G ports and optics (SX/LX, SR/LR), LACP

15-20 Gb/s (internal- and external traffic)
Netflow/IPFix support

Results of the research and choices

Using x86 servers = HP Gen-10 servers, 32 CPU’s and 256G memory

Operating System to run on bare-metal

Dedicated server to fulfill the service of full-table internet routing and routing security
Operating System to be used: OpenBSD and plan B
Multiple Intel X710 quad cards

Accepting that this will take time to build and test
Accepting risk of using opensource software

Let’s build?!

55%% ﬁ"ﬁ

Testbed

We created a testbed using multiple Cisco 1800, 2800 and 7200 series together with
Juniper vMX and 10G switches.

Virtual machines in Proxmox to create and verify flows/capturing traffic

This was not a full lab representing the production environment.

Fa0/2

10.10.20.71
Gg0/3

Gig7
X 10730.20.73

Gig0/1

GS

10.10.20.72

=

EQ-IX

?zoé RTD

10.10.20.57
Gig? Gigd

T

10.10.20.53
Gig7 Gigd

NL-IX

10.10.20.54

Fa0/2 Gig/1

RTD

N e
Tune 5
ne @_k 0LF (?*'D

Goal of testing

Does OpenBSD meet our expectations/requirements?

Familiarize with the OS, reading documentation and public presentations
Verify if all hardware is detected and working

Verify in- and outbound routing policy and RPKI ROV

Verification of the packet filters, flow testing

Operability testing between other vendors for OSPF, LDP and MP-BGP
Traffic/throughput testing

~100 testcases were defined and tested

Conversions

Interfaces
Routing services
Routing policy
|P-filters

Interface conversion

* |nterface group renamed from default egress—=> dfz (default free zone)

nl-ams-eq-brol:/etc$ ifconfig vlan7?

® Group name |S used W|th paCket-ﬂlte”ng (pf) vlan7: flags=8843<[g,BROADCAST,RUNNING, SIMPLEX,MULTICAST> mtu 1500

1laddr 40: a6 b7: 51:bf:

i : oselect (10GbaselLR full-duplex)
status: active
i Exal I lples: inet 193.239.117.46 netmask Oxfffffc00 broadcast 193.239.119.255

inet6 feB80::42a6:b7ff:fe51:bf10%vian7 prefixlen 64 scopeid 0x14
. inet6 2001:7f8:13::a501:5693:1 prefixlen 64

* trunkO (multiple physical interfaces as one logical), ixI8+ixI9

* vlan100 (vlan based interface) on top of the trunkO interface

nl-ams-eq-brol:~% ifconfig trunkO
trunk0: f1 ags=8843<, BROADCAST ,RUNNING, SIMPLEX,MULTICAST> mtu 9000
1laddr d4:f5:ef:13:50:b0

description: Core: nl-ams-eq-cr0l - Po2
index 14 priority 0 1lprio 3
trunk: trunkproto lacp
trunk id: [(8000,d4:f5:ef:13:50:b0,4075,0000,0000),
(8000,01 e0:52:00:00:01, OOOZ,OOOO OOOO)]
ix19 lacp actor system pri 0x8000 mac d4:f5:ef:13:50:b0, key O0x4075, port pri 0x8000 number Oxa
ix19 lacp actor state activity,aggregation,sync, co11ect1ng distributing
ix19 lacp partner system pri Ox8000 mac 0l:e0: 52:00:00: 01, key 0Ox2, port pri 0x8000 number 0x412
ix19 Tacp partner state activity,aggregation,sync, co11ect1ng d1str1but1ng
ix19 port active co11ect1ng,d1str1but1ng
ix18 lacp actor system pri 0x8000 mac d4:f5:ef:13:50:b0, key 0x4075, port pri 0x8000 number 0x9
ix18 lacp actor state activity,aggregation,sync,collecting,distributing
ix18 lacp partner system pri 0x8000 mac 01:e0:52:00:00:01, key Ox2, port pri 0x8000 number 0x212
ix18 lacp partner state activity,aggregation,sync,collecting,distributing
ix18 port active,collecting,distributing

groups: trunk o eselect nl-ams-eq-br0l:/etc$ ifconfig v1anl00

status: active _ vianl00: flags=88843<[J,BROADCAST,RUNNING,SIMPLEX,MULTICAST,MPLS> mtu 9000
1laddr d4:f5:et:13:50:b0
descr1pt1on Core: n1—ams eq -crol

encap: vnet1d 100 parent trunkO txprio packet rxprio outer

Interface conversion - MTU stacking

 |nterface MTU is also the L3MTU

Labeled interface (MPLS)
Used by the OSPF/LDP process

ixI8 mtu 9000 Juniper: L2ZMTU 9014 -> L3MTU 9000

vlan100 mtu 9000

trunkO mtu 9000

vlan200 mtu 1500

ixI9 mtu 9000

IP interface

ospf(6)d.conf

Routing daemons — OSPF/LDP

* OSPF and LDP are very basic in features and configuration

* L2VPN interworking only for “ethernet”

macros
id="195.191.121. 248"

global configuration
router-id $id
fib-update yes
stub router no
spf-delay 1
spf-holdtime 5

auth-key secret

auth-type simple
hello-interval 2

metric 10

retransmit-interval 5
router-dead-time 8

router-priority 1

transmit-delay 1

#redistribute default set { metric 10 type 1 }

areas
area 0.0.0.0 {
#gs-brol
interface ix11 {
metric 10

type p2p

|dpd.conf

global configuration
router-id 195.191.121.248

fib-update no

transport-preference ipv4

address-family ipv4 {
interface ix11
}

12vpn vlan550 type vpls {
bridge bridge550
interface vlan550

pseudowire mpw550 {
heighbor-id 195.191.121.251
pw-id 550

OpenBGPD - Routing policy and BGP peers

The juniper routing policy was easy to convert

The routing policy resulted in less entries with similar functionality

BGP groups and peers were converted using a python script

RPKI ROV integration (with rpki-client) is enabled by removing a # from crontab

s % RTR sessions

a

=
-—

P

vm?2

]

-

-
P

vml

Routing policy and BGP peer examples

nl-ams-eq-br0l: /etc$ doas bgpct]l show | grep Cloud

Cloudflare-v4 #1 13335 579452 355131 17w4d07h
Cloudflare-v4 #2 13335 423776 354550 02wed13h
Cloudflare-v4 #3 13335 396452 355131 17w4d07h

Cloudflare-v6 #1 13335 377536 355131 17w4d07h
Cloudflare-ve #2 13335 366811 354548 02wed13h
Cloudflare-v6 #3 13335 374078 355131 17w4d07h

BGP status

group "nlix" {
role peer
set localpref 150
neighbor 193.239.116.255 {

role rs-client
remote-as 34307
enforce neighbor-as no
descr "NL-IX RS-v4 #1"
max-prefix 180000

deny RPKI invalid, built by rpki-client(8), see root crontab
deny quick from group "transit" ovs invalid

deny quick from group "nlix" ovs invalid

deny quick from group "eqix" ovs invalid

3785/20000

3770/20000

3763/20000
380/2000
376/2000
359/2000

#deny ASPA invalid

deny quick from group "transit" avs invalid
deny quick from group "nlix" avs invalid
deny quick from group "eqix" avs invalid

Routing policy used for RPKI ROV and ASPA

#nexthop self for all eBGP neighbors
match from ebgp set { nexthop self }

Setting nhs

Add internal community to transit and IX
match from group "nlix" set { community 15693:1000 }
match from ebgp AS 24785 set { community 15693:3000 }

A BGP route-server neighbor with multiple “knobs”, hierarchy and ASPA roles acaNa e LT I R B A S R e

#do not announce to google on eqix

Setting a community

#match to 2001:7f8:83::2:4115:1 set { large-community 24115:0:15169 } W# Add rtlabel for advertisements towards bgp pe-ce customers
#match to 2001:7f8:83::2:4115:2 set { Targe-community 24115:0:15169 } @lmatch from ibgp ext-community rt 15693:3 set { rtlabel mgmt }

BGP traffic engineering using large communities

VPNv4 policy, set rtlabel to mgmt

nl-ams-eq-br0l:~$% doas bgpctl show rib table Adj-RIB-In ovs invalid |

-7 23.133.8.0/24 217.170.19.66 100

-2 23.133.8.0/24 217.170.19.65 100

0 24785 6939 1348
0 24785 6939 13482

-7 23.139.40.0/24 217.170.19.66 100

RIB-In, viewing RPKI invalid routes

0 24785 6939 945 6

Packet filter (pf)

Stateful vs stateless filtering?

Explicit deny, we allow what we think is needed = more on this later ©
Most rules implemented using ‘quick’ = predictable behaviour
Using lists, tables and macro’s in the pf rules

Similar type of syntax is used in the routing policy

Packet filter (pf) examples

table <martians> { 0.0.0.0/8 10.0.0.0/8 127.0.0.0/8 169.254.0.0/16 \

172.16.0.0/12 192.0.0.0/24 192.0.2.0/24 224.0.0.0/3 \ # Dro _ : :
_ p packets from non-routable addresses immediately
192.168.0.0/16 198.18.0.0/15 198.51.100.0/24 \ block in quick on dfz from <martians> to any

block in quick on dfz from <martiansv6> to any

203.0.113.0/24 }
table <martiansv6> { ::/8 0100::/64 2001:2::/48 2001:db8::/32 2002::/16 \
fc00::/7 3ffe::/16 }

Drop packet from our own as space immediately (antispoofing)
table <bc_prefixes> { 46.183.248.0/21 195.191.120.0/23 block in quick on dfz from <bc_prefixes>

#Pass ipsec tunnels and pptp
pass in quick on dfz proto { ah, esp, gre } to <bc_prefixes> no state

#A11low all tcp and udp traffic towards bc prefixes . . .
pass in quick on dfz proto { tcp, udp } to <bc_prefixes> no state Combination of a list and table

icm _ "136 }" # destination unreachable, packet too big, time exceeded, echo request, echo reply (ping6)

Macro example '

5&&& in quick on dfz 1net6-pf0fo 1p§6;icmp 1émp6;ty§e S{Empé_iypés_nb state

#A1Tow § =5 sessions on directly connected networks only
pass 1in 1Ck JC proto tcp from self:network to self port 179 no state

Block everything else
block in Tog on dfz all
bTlock in Tog on oobmgmt all

Management and security

* Management & Routing domains

e System hardening

Management and Routing domains

e By using r(outing)domains we can create separate routing tables.

 We defined two rdomains:
* Inband management = rdomain 3 (using MPLS L3VPN)
* Inband management using other IP space = rdomain 4 (using static routes)

p in quick on ix12 netproto c rom$trlstd_1' t_<obpf1'x> port { 2222 3389 } rtable 4

* |Pinterfaces are assigned to the rdomain

nl-ams-gs-br0l:~% netstat -T 3

Routing tables nl-ams-gs-br0l:~$ cat /etc/hostname.vland

rdomain 3

rtlabel mgmt

parent trunkO vnetid 4

inet 192.168.255.239/23

description "Management vlan"

lroute -T3 -n add default 192.168.255.254 -Tlabel mgmt
#exchange

lroute -T3 -n add 192.168.56.0/24 192.168.255.2 -Tabel mgmt
group mgmt

Internet:

Destination Gateway Flags Refs Use
default 192.168. . 25¢ UGS 36076500
127.0.0.1 127.0.0. UHT 0
192. .56/24 192.168. . UGS 10
192. .56/24 195.191. . uT 0
192. .194/24 195.191. . uT 70618210
192. .214/24 195.191. . uT 23352814
192. .224.1/32 195.191. . uT 0
192. .254/23 192.168. . ucn 17596803
192. .254/23 195.191. . uT 0

=
rt
c

'_l
PO~NOORrROOOO

Hardening of the system

OpenBSD is a hardened OS and preaches to be “secure by default”

Disabling unused default services:
Example: slaacd, dhcp-service (client), quotachecks, sndiod disabled

Services for management = isolated in rdomains

Internet facing services _
Packet filter
Infrastructure IP space

Migrations and upgrades

Migration attempt highlights
A migration special
Caveats after the migration

Our method of upgrading the system

Migration attempt #1

* Preparation:
* Patching scheme for the physical cabling
* Migration order and verification documentation

* We replaced one border router with OpenBSD and ran into several issues

 We were not in control, so we did a rollback and evaluation.

Migration attempt #2

Fixed issues from attempt #1 in the lab
Added troubleshooting of pf rules and flows

ftroubleshooting flows
ftshootipl="{ 47.240.90.48/32 }"
ftshootip2="{ 2a01:8800::25/128 }"

ftpass in log quick from $tshootipl no state
ftpass in log quick proto tcp from $tshootip2 no state

Created documentation on how to receive more logging from network services
De-peering of IPv6

We were in control! ©

Specials.... and 2" border router migration

* vlan naming/numbering scheme: ixl/trunk number + vlan-id = name of the vlan interface.
* vlan 4 on ixI8: vlan84, vlan 4 on trunkO: vlan4, veb interface with vlan 4: veb4
* veb4 has vlan84+vlan4 added as vports
* One veb was routing within a rdomain for MGMT
 The amount of interfaces adds up quickly >50

border (border

e

/ I Multiple VLANSs N

DC Fabric — JI_ SwitI:h DC Fabric

Multiple VLANs BGP PE-CE BGP PE-CE

Remote DC Remote DC

Caveats >1 month

In OpenBSD 6.9 we could not restart Idpd when bgpd was running with full-tables
ospféd network type on interfaces acts unpredictable = best results with p2p
We encountered a bug in the route-reflection of VPNv4

Reachability issues towards some RPKI repositories

-ams-eqg-br0l: /etc$ doas route sourceaddr
Preferred source address set for rdomain O
IPv4: 195.191.121.248
IPv6: 2a01:8800:0:1::1

nl-ams-eq-brol: /etc$ |}

Using “doas” on linux machines ©

Upgrading the system

15t system upgrade in 2-3 months i
Stable Release Y = 4-6 weeks 2"% system

(+ errata fixes) upgrade

* We started with OpenBSD 6.9 stable, new stable is released every 6 months, latest: OpenBSD 7.4
* x86 server and components

* Downgrading

* Countermeasures

e Backup scripts

* Maximum of 1 year behind stable releases

Implemented features and future

® Implementation of Large community support
® Implementation of Multipath routing

9 Implementation of BGP Add-path

® Implementation of ASPA validation

* FlowSpec integration in OpenBGPD —> APl available in 7.4

® Sponsoring a public OpenBSD mirror
 Keep reading and contributing to tech@ and bugs@

Conclusion

This “journey” took us around 6 months

Building a lab that was production-like was a good move

Small concessions on the network design and features we used
Border routers are stable, 4 flawless system upgrades

We submitted about 5 bug reports, 3 of them were fixed

Cost effective solution for our requirements

Exposure to some latest routing security developments like ASPA

Was it all worth it? = YES

Special thanks:

My employer Routz for sponsoring this day!

IIIIIIIIIIIIIIIIIIIIIIIII

https://routz.nl

Eddy Mouws — CTO

......
[®
......
| B 4 ® 0

BUSINESS
CONNECT

https://businessconnect.nl

https://routz.nl/
https://businessconnect.nl/

	Slide 1: The journey to Opensource networking with OpenBSD @AS15693
	Slide 2: Introduction
	Slide 3: Network topology and layers
	Slide 4: The challenge in 2021
	Slide 5: Research on (cheaper) alternatives
	Slide 6: Network Requirements
	Slide 7: Results of the research and choices
	Slide 8: Let’s build?!
	Slide 9
	Slide 10: Goal of testing
	Slide 11: Conversions
	Slide 12: Interface conversion
	Slide 13: Interface conversion - MTU stacking
	Slide 14: Routing daemons – OSPF/LDP
	Slide 15: OpenBGPD - Routing policy and BGP peers
	Slide 16: Routing policy and BGP peer examples
	Slide 17: Packet filter (pf)
	Slide 18: Packet filter (pf) examples
	Slide 19: Management and security
	Slide 20: Management and Routing domains
	Slide 21: Hardening of the system
	Slide 22: Migrations and upgrades
	Slide 23: Migration attempt #1
	Slide 24: Migration attempt #2
	Slide 25: Specials…. and 2nd border router migration
	Slide 26: Caveats >1 month
	Slide 27: Upgrading the system
	Slide 28: Implemented features and future
	Slide 29: Conclusion
	Slide 30: Special thanks:

