

The CPU Rootkit you probably
don’t know about

Fabian Groffen
Kevin Keijzer

NLUUG, November 28, 2023

Basic Input/Output System origins

● Modern BIOS stems from the IBM PC
● Reverse-engineered for “PC compatibles”
● First generation BIOSes were very minimal:

– No GUI
– Configuration via dipswitches and jumpers
– Stored on a read-only ROM chip

● All implementations are completely proprietary

Basic Input/Output System current generations

● Mid 90’s GUIs appeared, chips became R/W
● 2008: Intel added out-of-band management tools

– Intel Management Engine
– Intel Active Management Technology
– AMD followed suit around 2013 AMD Platform Security Processor→

The x86 boot process

● Flash chip initialization
● RAM detection + training / initialization
● Bus initialization
● Memory mapping
● Search for bootloader

– e.g. on a storage device's master boot record / EFI system partition
● Load found bootloader

The vendor BIOS / UEFI

● Functionality as for x86 boot process (previously discussed)
● Shows a (vendor) logo, gives interactive menu with function keys
● Allows configuration of low-level hardware

– Fans
– Boot devices
– USB modes, enabled/disabled, etc.

● Facilitates other firmwares, like ME, PSP, PXE boot

Flash chip layout

● Intel systems: firmware descriptor table (FDT)

0. Flash Descriptor: partition table

1. BIOS: vendor firmware code BIOS/UEFI

2. Intel ME: Intel Management Engine firmware

3. GbE: Intel NIC config including MAC address

4. Platform Data: possibly unused

Intel Management Engine (ME)

● Separate, independent ARC processor core in the
northbridge and later in the CPU

● Runs proprietary RTOS based on MINIX and a Java
VM

● Ring -3; full system control, complete memory
access

● Runs even when the system is off or suspended
● Cryptographically signed and checked upon every

boot
● Part of Active Management Technology and vPro
● Contains network stack and provides out-of-band

access
● Numerous serious vulnerabilities have been found
● Essentially a hardware-based rootkit and backdoor

CVE-2017-5712

AMD Platform “Security” Processor

● Separate, independent ARM processor in the main CPU die
● Controls entire boot process; keeps the x86 cores in reset until initialized
● Proprietary OS licensed from a company named TrustZone
● Cryptographically signed and checked upon every boot
● Less researched than the Intel ME, so less is known about it
● Functions (and issues) are similar to the Intel ME though
● Runs in Ring -3
● Multiple security flaws have been found
● Essentially also a hardware-based rootkit

ME/PSP generations

● ME capabilities became gradually worse

● Up to Core 2 era (2009), the firmware could be left out completely

● Starting with Sandy Bridge (2011) and on, parts of it have to remain

– The system will shut down after 30 minutes without BUP-partition of the ME firmware

● Starting with Skylake (2015) more parts of the ME firmware have to remain, increasing the size from
~90kB to ~300kB

– The ME requires a kernel and syslib partition in addition to BUP from here on

● Starting with Alder Lake (2021) there is no possibility to strip or disable the ME firmware: it has to remain
in full

● The NSA demanded for an option to “soft-disable” the ME, which Intel implemented as AltMEDisableBit
and later HAP bit (both methods are undocumented)

● There is no known way to disable the AMD PSP on any generation of hardware

– If the PSP is not started, the x86 cores are kept in reset indefinitely

Intel Boot Guard

● Not all vendor BIOSes can run with modified / stripped ME firmware,
many of them crash

● 2013: Intel added "Boot Guard", cryptographic signatures checking boot
firmware before execution

– With Boot Guard, the boot firmware has to be signed with an Intel key in
order to run at all

– Boot Guard is present on most systems
● The vendor can disable Boot Guard during the production process
● Boot Guard is not possible when the motherboard and CPU are sold

separately (i.e. with self-built desktops)

BIOS firmware conclusions

● BIOS firmware has grown immensely since the 90's
● Many (anti)features have been added
● Auditing the firmware is (nearly) impossible
● Many of the features can be handled (better) by an operating system kernel

Now, so what?

coreboot

● Open source lightweight boot firmware (GPLv2)

● Replaces BIOS / UEFI
● Performs only the minimal hardware initialization
● Booting OS handled by a payload
● Used on all Chromebooks
● Used on all Intel laptops from System76 and Purism
● Around 250 laptops and motherboards are supported

Why use coreboot?

● coreboot allows you to completely control
the boot process

● Open source: fully auditable
● System logs from pushing the power

button
● coreboot is FAST
● Runs without ME (firmware) if the chipset

allows it
● Does not implement any artificial

restrictions

Payloads

● coreboot only does basic hardware
initialization

● coreboot does not load an OS
● coreboot does not have a network stack
● coreboot does not even have a menu
● When coreboot is finished, it executes a

payload

Payload examples are:
● SeaBIOS
● GRUB
● TianoCore (UEFI)
● Petitboot (Linux)
● coreinfo
● memtest86+

GRUB payload

● GRUB is present on the flash chip on the motherboard
● Even when no storage device is present, it will still start
● It looks for a grub.cfg file on all storage devices
● It can chainload other payloads, like memtest86+, coreinfo, SeaBIOS, etc.
● Acts like a (BIOS) boot menu

Compiling coreboot

● Compiled for your particular motherboard
● Written mostly in C, with some Assembly

and Ada (framebuffer)
● 32-bit code, cross-compiler from coreboot
● Same config system as Linux kernel
● .config file for manual/scripted config
● Internal filesystem: CoreBootFileSystem

Flashing firmware

● Remember: vendor firmware + ME protect
the flashchip from writes

● First flash must be done “external”

– Socketed chips: replace or remove
– Soldered chips: flash using clip

● Disable Linux kernel protection from writes
● Updates: flash from Linux

flashrom -p internal ...

Running coreboot

● Power on system :)
● coreboot launches chosen payload after init stages
● ???
● PROFIT!

● Under Linux, use cbmem (e.g. bootlog) and nvramtool (settings)

coreboot on different Intel platforms

● Up until and including Intel Ivy Bridge (2012), coreboot itself can be 100% FOSS

– The only exceptions are the other flash regions (ifd, gbe and me), which are not
part of coreboot

● Starting with Haswell (2013), there is no more open source code that can initialize
RAM, which is a primary feature of coreboot

– Instead, a blob from Intel, called MRC.bin has to be used
– There are some efforts to reverse-engineer this blob, but it's not production-

ready yet
● Starting with Broadwell (2014), Intel uses the Firmware Support Package (FSP),

which is a large blob handling all hardware initialization

– The FSP is used by both vendor firmware and coreboot
– It basically degrades coreboot to a glue layer

Want to run coreboot?

● If you want to run 100% open source coreboot
with a stripped ME, these are some easily
available options:

– Laptops:
● Lenovo ThinkPads: X230, T430, T530

– Motherboards:
● ASUS P8Z77-V
● ASRock B75M-ITX, B75 Pro3-M, H77

Pro4-M
● Gigabyte GA-B75M-D3H

Desktop CPUs:

Intel 3rd generation
i3/i5/i7

For best performance:
● i7-3770 (not K/S/T)

● 3.9GHz, 8 HT cores
For HTPC use:
● i5-3570S

● 3.6 GHz, lower TDP

Further reading

● coreboot website

– https://coreboot.org/
● “Intel x86s hide another CPU that can take over your machine” by Damien Zammit

– https://boingboing.net/2016/06/15/intel-x86-processors-ship-with.html
● “x86 considered harmful” by Joanna Rutkowska

– https://blog.invisiblethings.org/2015/10/27/x86_harmful.html
● “Rootkit in your laptop” by Igor Skochinsky

– https://osresearch.net/PDFs/Rootkit_in_your_laptop.pdf
● “Intel ME Cleaner: How does it work?” by Nicola Corna

– https://github.com/corna/me_cleaner/wiki/How-does-it-work%3F

https://coreboot.org/
https://boingboing.net/2016/06/15/intel-x86-processors-ship-with.html
https://blog.invisiblethings.org/2015/10/27/x86_harmful.html
https://osresearch.net/PDFs/Rootkit_in_your_laptop.pdf
https://github.com/corna/me_cleaner/wiki/How-does-it-work%3F

Thank you

Questions?

	Dia 1
	Dia 2
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18
	Dia 19
	Dia 20
	Dia 21
	Dia 22
	Dia 23
	Dia 24

The CPU Rootkit you probably don’t know about

Fabian Groffen

Kevin Keijzer

NLUUG, November 28, 2023

Gemberspijs dient hier iets te typen.

Basic Input/Output System origins

		Modern BIOS stems from the IBM PC

		Reverse-engineered for “PC compatibles”

		First generation BIOSes were very minimal:

		No GUI

		Configuration via dipswitches and jumpers

		Stored on a read-only ROM chip

		All implementations are completely proprietary

K: Let's start with some history. The name BIOS originates from the Basic Input/Output System of the CP/M operating system from 1975. But the BIOS as we know it today stems from the IBM PC from the 1990’s.

It was reverse-engineered by IBM’s competitors so they could make PC compatible clones.

The first generation of BIOS’es were very minimal, which also explains why it was relatively easy to reverse-engineer them.

They had no GUI’s, the configuration was done through dipswitches and jumpers on the motherboard, and the minimal code was stored on a read-only ROM-chip.

As to be expected, all vendor BIOS implementations are completely proprietary.

Basic Input/Output System current generations

		Mid 90’s GUIs appeared, chips became R/W

		2008: Intel added out-of-band management tools

		Intel Management Engine

		Intel Active Management Technology

		AMD followed suit around 2013 → AMD Platform Security Processor

K: As the complexity and features grew, the fact that all implementations were proprietary became a larger problem.

In the mid-1990’s, GUI’s were added to the BIOS, and the chips they were stored on became writable.

This means that configuration values could be stored on the chip, but it also meant that the BIOS could be overwritten with different code.

It wasn’t until the 2000’s when things really became a bloated mess. In 2008, Intel added out-of-band management tools to their BIOS’es, which also added a full network stack and a co-processor with direct memory access.

They called this co-processor the “Intel Management Engine” and the entire toolset “Intel Active Management Technology”. In 2013 AMD followed suit with a comparable platform; their “Platform Security Processor”.

As you can imagine, by then the BIOS’es were hardly just doing initialization any more, but became a proprietary, black-box operating system on their own.

The x86 boot process

		Flash chip initialization

		RAM detection + training / initialization

		Bus initialization

		Memory mapping

		Search for bootloader

		e.g. on a storage device's master boot record / EFI system partition

		Load found bootloader

K: When pushing the power button, the first thing that happens is that the flash chip, containing the boot firmware, is initialized. This firmware is then loaded into the CPU’s caches, because the system memory is not yet initialized.

Once the boot firmware is running, the first thing it does is RAM initialization. This means that it detects which and how many memory modules are present.

Then it starts training the memory: it sets the clock frequency and it tests the timings, to see if the system can run stable with the chosen settings.

As soon as the RAM is set up, the boot firmware can utilize it. Once this stage is reached, the firmware will copy itself to RAM and start enumerating buses, by first setting up the bus clocks and then setting up the devices connected to them. This means that PCI Express devices, such as graphic cards, sound cards, network cards and disk controllers are able to work.

When the buses are set up, all detected devices will get their own memory mappings, so operating system kernels can use them once they are booted.

The final stage of the boot firmware is the handover to the bootloader.

This searches for the operating system on a storage device’s master boot record or on the EFI system partition. As soon as this bootloader is found, it will be loaded.

The vendor BIOS / UEFI

		Functionality as for x86 boot process (previously discussed)

		Shows a (vendor) logo, gives interactive menu with function keys

		Allows configuration of low-level hardware

		Fans

		Boot devices

		USB modes, enabled/disabled, etc.

		Facilitates other firmwares, like ME, PSP, PXE boot

Gemberspijs dient hier iets te typen.

Flash chip layout

		Intel systems: firmware descriptor table (FDT)

				Flash Descriptor: partition table

		BIOS: vendor firmware code BIOS/UEFI

		Intel ME: Intel Management Engine firmware

		GbE: Intel NIC config including MAC address

		Platform Data: possibly unused

Gemberspijs dient hier iets te typen.

Intel Management Engine (ME)

		Separate, independent ARC processor core in the northbridge and later in the CPU

		Runs proprietary RTOS based on MINIX and a Java VM

		Ring -3; full system control, complete memory access

		Runs even when the system is off or suspended

		Cryptographically signed and checked upon every boot

		Part of Active Management Technology and vPro

		Contains network stack and provides out-of-band access

		Numerous serious vulnerabilities have been found

		Essentially a hardware-based rootkit and backdoor

K: The Intel Management Engine is an independent ARC processor core present in the northbridge, the upper part of a motherboard’s chipset, or later in the CPU itself.

It runs a proprietary real-time OS which is based on Minix and a Java virtual machine.

The Intel Management Engine has been classified as running in Protection Ring -3, so a step below System Management Mode.

This is because it even runs when the system is in S3 and S5 power states. So it doesn’t turn off unless you pull the power plug and remove the battery.

For reference: an operating system’s kernel runs in Ring 0, and your web browser runs in Ring 3. The lower the number, the higher the level of system access.

The ME firmware is cryptographically signed, and its signature is checked on every boot.

On modern systems, if the firmware is corrupted, the system’s hardware watchdog will shut it down after 30 minutes of operation. This basically renders the system unusable for anyone not wanting to run the ME black box, or the software running on top of it, such as AMT, vPro and DRM components.

To to sum up, the Management Engine contains a network stack and provides out-of-band access for remote control of a system below the OS level. Numerous serious vulnerabilities have been found, which is probably only the tip of the iceberg. So when we disregard Intel’s marketing and look only at the functionality, the ME is a hardware-based rootkit and backdoor.

CVE-2017-5712

Gemberspijs dient hier iets te typen.

AMD Platform “Security” Processor

		Separate, independent ARM processor in the main CPU die

		Controls entire boot process; keeps the x86 cores in reset until initialized

		Proprietary OS licensed from a company named TrustZone

		Cryptographically signed and checked upon every boot

		Less researched than the Intel ME, so less is known about it

		Functions (and issues) are similar to the Intel ME though

		Runs in Ring -3

		Multiple security flaws have been found

		Essentially also a hardware-based rootkit

K: This brings us to AMD’s counterpart, the Platform Security Processor. The PSP is a separate, independent ARM processor in the main CPU die.

It controls the boot process completely, and keeps the x86 cores in reset until it is initialized. This means that the computer won’t execute a single instruction unless the PSP is running.

The PSP runs a proprietary OS from a company named TrustZone. Very little is known about it.

What we do know though, is that the PSP is also cryptographically signed and checked on every boot, rendering the system unusable if corrupted.

But all in all, the PSP is far less researched compared to Intel’s Management Engine.

Nonetheless, the functions and issues are similar to Intel’s ME. It also runs in Ring -3, multiple security flaws have been found, and it can be classified as a hardware-based rootkit. Moreover, the AMD PSP also hijacks cryptographic instructions from the main x86 CPU cores, which is then marketed as a "secure enclave".

ME/PSP generations

		ME capabilities became gradually worse

		Up to Core 2 era (2009), the firmware could be left out completely

		Starting with Sandy Bridge (2011) and on, parts of it have to remain

		The system will shut down after 30 minutes without BUP-partition of the ME firmware

		Starting with Skylake (2015) more parts of the ME firmware have to remain, increasing the size from ~90kB to ~300kB

		The ME requires a kernel and syslib partition in addition to BUP from here on

		Starting with Alder Lake (2021) there is no possibility to strip or disable the ME firmware: it has to remain in full

		The NSA demanded for an option to “soft-disable” the ME, which Intel implemented as AltMEDisableBit and later HAP bit (both methods are undocumented)

		There is no known way to disable the AMD PSP on any generation of hardware

		If the PSP is not started, the x86 cores are kept in reset indefinitely

K: Up to the Core 2 era, the ME firmware could be left out completely. If the firmware supported ME-less operation, nothing bad would happen, and the system would just run without any ME operation.

But starting from the Sandy Bridge era, parts of the ME firmware have to remain.

The firmware is divided in partitions, and researchers found out a way to remove non-essential partitions without tripping the ME’s self-destructive mechanisms. Nonetheless, if the BUP partition – which means ‘bring up’ – is left out, the system will shut down after 30 minutes.

On more recent Intel platforms, even more ME partitions have to remain for the system to work, and on the most recent generations there is no way to strip it at all, although it may still be soft-disabled in some cases, because, ironically, the NSA demanded for such an option to be present, as otherwise they would no longer be willing to allow the use of Intel platforms for many US government systems.

On the AMD side, things are a bit different. It took them many years longer to implement the things Intel did. So up to 2013, AMD hardware did not contain any anti-features similar to the ME. On the other hand, there is currently no known way to disable or strip the AMD PSP, and without the PSP running, the x86 cores won't start at all.

Intel Boot Guard

		Not all vendor BIOSes can run with modified / stripped ME firmware,

many of them crash

		2013: Intel added "Boot Guard", cryptographic signatures checking boot firmware before execution

		With Boot Guard, the boot firmware has to be signed with an Intel key in order to run at all

		Boot Guard is present on most systems

		The vendor can disable Boot Guard during the production process

		Boot Guard is not possible when the motherboard and CPU are sold separately (i.e. with self-built desktops)

Gemberspijs dient hier iets te typen.

BIOS firmware conclusions

		BIOS firmware has grown immensely since the 90's

		Many (anti)features have been added

		Auditing the firmware is (nearly) impossible

		Many of the features can be handled (better) by an operating system kernel

Gemberspijs dient hier iets te typen.

Now, so what?

Gemberspijs dient hier iets te typen.

coreboot

		Open source lightweight boot firmware (GPLv2)

		Replaces BIOS / UEFI

		Performs only the minimal hardware initialization

		Booting OS handled by a payload

		Used on all Chromebooks

		Used on all Intel laptops from System76 and Purism

		Around 250 laptops and motherboards are supported

F: coreboot is a lightweight free and open source boot firmware project that aims to replace the proprietary BIOS or UEFI found on Intel and AMD x86 computers.

It was founded in 1999 in at Los Alamos National Laboratory. The goal back then was to design a BIOS that would start fast, would be remotely configurable, and would handle errors in a way that would allow easy debugging.

As a result, coreboot is pretty modular. coreboot itself only performs the bare minimum number of tasks required to initialize the hardware, after which it stops executing entirely.

Running the operating system’s bootloader is handled by a payload, such as SeaBIOS, EDK2 or GRUB.

coreboot is used in all Chromebooks.

Other vendors, such as System76 and Purism, use coreboot on some or all of their machines. And of course coreboot can be installed on certain existing machines, replacing the vendor’s proprietary firmware, as is the case on many ThinkPad models and desktop motherboards. In total, around 230 laptops and motherboards are supported by coreboot.

Why use coreboot?

		coreboot allows you to completely control the boot process

		Open source: fully auditable

		System logs from pushing the power button

		coreboot is FAST

		Runs without ME (firmware) if the chipset allows it

		Does not implement any artificial restrictions

K: So why would you want to use coreboot? Well, like we explained, proprietary firmware is bad and scary. But aside from coreboot being non-bad and not-scary, it also has many technical merits.

For starters, coreboot allows you to completely control the boot process, because you can create your own firmware and configure it to your needs.

And because it’s open source, it can be audited entirely and you can compile your binaries yourself.

You also don’t have to be afraid that there will be no more updates from the vendor. A coreboot update is just a git pull and make away.

Another coreboot feature is that it allows you to log all the way back to pushing the power button.

Moreover, coreboot is fast. It usually takes less than 300 milliseconds to get to the payload after pressing the power button. And it also doesn’t implement any artificial restrictions or whitelists.

This means that you can strip or remove ME firmware, install any WiFi card you want, that you can use server CPU’s on desktop motherboards, you can use as much RAM as your chipset supports, and so on.

Payloads

		coreboot only does basic hardware initialization

		coreboot does not load an OS

		coreboot does not have a network stack

		coreboot does not even have a menu

		When coreboot is finished, it executes a payload

Payload examples are:

		SeaBIOS

		GRUB

		TianoCore (UEFI)

		Petitboot (Linux)

		coreinfo

		memtest86+

K: Unlike the monolithic proprietary BIOS and UEFI implementations, coreboot only does basic hardware initialization, and nothing else.

coreboot does not load the operating system from a storage device.

It also doesn’t have a network stack or interfaces to anything not absolutely required to initialize the hardware.

When coreboot is finished, it stops running and it executes a payload.

The payload is the part that actually looks for bootable devices and starts the operating system’s kernel. Because of this strict division between coreboot and payloads, there is a lot of flexibility. You can choose any payload you want, depending on your needs. Perhaps you want to emulate a compatible legacy 16-bit BIOS. Or maybe you want to put a Linux kernel and BusyBox directly on the flash chip of your motherboard.

Examples of payloads are SeaBIOS, GRUB, TianoCore, Petitboot, coreinfo and memtest86+. SeaBIOS is a legacy 16-bit compatible BIOS. GRUB is the Grand Unified Bootloader, which is also used in pretty much every GNU/Linux distribution. TianoCore is an open source UEFI implementation, and Petitboot is a kexec bootloader, which is essentially a Linux kernel that starts another kernel.

GRUB payload

		GRUB is present on the flash chip on the motherboard

		Even when no storage device is present, it will still start

		It looks for a grub.cfg file on all storage devices

		It can chainload other payloads, like memtest86+, coreinfo, SeaBIOS, etc.

		Acts like a (BIOS) boot menu

Gemberspijs dient hier iets te typen.

Compiling coreboot

		Compiled for your particular motherboard

		Written mostly in C, with some Assembly and Ada (framebuffer)

		32-bit code, cross-compiler from coreboot

		Same config system as Linux kernel

		.config file for manual/scripted config

		Internal filesystem: CoreBootFileSystem

K: In order to get coreboot to run, it has to be compiled for the particular motherboard you want it to run on. You’ll have to do this yourself. The coreboot project does not provide binaries.

coreboot is written mostly in C, Assembly, and Ada.

It is 32-bit code, so on modern 64-bit machines you’ll need a cross-compiler. The coreboot project provides a patched GNU C Compiler to build the coreboot binaries.

If you ever compiled a Linux kernel, the configuration toolchain will look familiar to you. coreboot uses menuconfig and nconfig like the kernel does.

The configuration file can be used to define which features you want compiled into your ROM. coreboot is very configurable, and nearly everything can be enabled or disabled as desired.

A coreboot ROM contains an internal filesystem, the CBFS or coreboot filesystem.

Configuration values can be stored in two places: on the flash chip in the coreboot filesystem, which requires re-flashing when changes are made, but said changes would be persistent, or in the system’s CMOS. These changes can be made on the fly, but would be lost without a backup battery.

Userspace tools exist for manipulating both the CMOS and CBFS.

Flashing firmware

		Remember: vendor firmware + ME protect the flashchip from writes

		First flash must be done “external”

		Socketed chips: replace or remove

		Soldered chips: flash using clip

		Disable Linux kernel protection from writes

		Updates: flash from Linux

flashrom -p internal ...

K: Now how do we get our freshly compiled coreboot ROM installed? Well, this is typically done over the serial peripheral interface of the BIOS chip, using an SPI programmer.

This is because on pretty much every modern system, the UEFI firmware, ME or PSP make it impossible to write to the chip when the system is running.

Once coreboot is installed though, it can be updated from the operating system.

In most cases, the tool flashrom is used to program the BIOS chip, both when flashing internally and when flashing externally.

When your motherboard has a DIP socket for the SPI flash, you can just pull out the chip and reflash it. When your chip is soldered, you'll need a clip to do in-situ programming.

The hardware flashers are usually general purpose devices with SPI interfaces, such as Raspberry Pi’s and other single board computers. But dedicated devices like USB chip flashers also exist. A commonly used example is the CH341a.

Running coreboot

		Power on system :)

		coreboot launches chosen payload after init stages

		???

		PROFIT!

		Under Linux, use cbmem (e.g. bootlog) and nvramtool (settings)

Gemberspijs dient hier iets te typen.

coreboot on different Intel platforms

		Up until and including Intel Ivy Bridge (2012), coreboot itself can be 100% FOSS

		The only exceptions are the other flash regions (ifd, gbe and me), which are not part of coreboot

		Starting with Haswell (2013), there is no more open source code that can initialize RAM, which is a primary feature of coreboot

		Instead, a blob from Intel, called MRC.bin has to be used

		There are some efforts to reverse-engineer this blob, but it's not production-ready yet

		Starting with Broadwell (2014), Intel uses the Firmware Support Package (FSP), which is a large blob handling all hardware initialization

		The FSP is used by both vendor firmware and coreboot

		It basically degrades coreboot to a glue layer

K: Up until and including Intel Ivy Bridge platforms (2012), coreboot can be 100% open source.

The only exceptions are the other regions on the flash chip, which are not part of coreboot. These regions consist of a partition table, configuration for the ethernet NIC, and the (stripped) ME firmware.

Starting with Intel Haswell (2013), there is no more open source code that can initialize RAM, which is a primary feature of coreboot. Instead, a blob from Intel, called MRC.bin has to be used, and placed in the coreboot ROM.

There are some efforts to reverse-engineer this MRC.bin blob, but so far it's not production-ready.

Starting with Intel Broadwell (2014), Intel uses the Firmware Support Package (FSP), which is a large blob handling all hardware initialization.

This FSP is used by both vendor firmware and coreboot, and essentially degrades coreboot to a glue layer connecting the FSP to a payload.

Want to run coreboot?

		If you want to run 100% open source coreboot with a stripped ME, these are some easily available options:

		Laptops:

		Lenovo ThinkPads: X230, T430, T530

		Motherboards:

		ASUS P8Z77-V

		ASRock B75M-ITX, B75 Pro3-M, H77 Pro4-M

		Gigabyte GA-B75M-D3H

Desktop CPUs:

Intel 3rd generation i3/i5/i7

For best performance:

		i7-3770 (not K/S/T)

		3.9GHz, 8 HT cores

For HTPC use:

		i5-3570S

		3.6 GHz, lower TDP

Gemberspijs dient hier iets te typen.

Further reading

		coreboot website

		https://coreboot.org/

		“Intel x86s hide another CPU that can take over your machine” by Damien Zammit

		https://boingboing.net/2016/06/15/intel-x86-processors-ship-with.html

		“x86 considered harmful” by Joanna Rutkowska

		https://blog.invisiblethings.org/2015/10/27/x86_harmful.html

		“Rootkit in your laptop” by Igor Skochinsky

		https://osresearch.net/PDFs/Rootkit_in_your_laptop.pdf

		“Intel ME Cleaner: How does it work?” by Nicola Corna

		https://github.com/corna/me_cleaner/wiki/How-does-it-work%3F

F: Well, this was a pretty basic introduction to coreboot and the horror that is the x86 architecture. I would understand if you’d want to spend the rest of the weekend remaining clothed and reading about this subject, so I can give a couple of suggestions for further reading.

First off, of course, the coreboot website.

Second, Damien Zammit once wrote up an article called Intel x86s hide another CPU that can take over your machine. This was aimed towards the general public, so it should be very easy to read.

If you want more in-depth research about the x86 platform’s shortcomings and possible workarounds for them, I’d suggest reading Joanna Rutkowska’s x86 considered harmful paper. It goes over many parts of boot logic, including the BIOS, system management mode and the Intel ME.

For a very deep technical analysis of the Intel Management Engine, even beyond my own comprehension of the subject, read the slides of Rootkit in your laptop by Igor Skochinsky.

And if you want to know more about how the Intel Management Engine firmware is put together and how it can be neutered, I’d suggest reading the me_cleaner wiki pages, written by Nicola Corna.

Thank you

Questions?

Gemberspijs dient hier iets te typen.

Userspace tools

		cbfstool

		can edit the coreboot filesystem in the ROM

		nvramtool

		can edit the system’s CMOS

		flashrom

		Can read and write the ROM’s on BIOS chips

		ich9gen

		Can generate firmware descriptors for ICH9 generation hardware

		ifdtool

		Can edit firmware descriptors extracted from vendor BIOS'es, needed on newer Intel platforms

		cbmem

		Can read the coreboot memory buffer

		intelmetool

		Can check the Intel ME’s running mode, if present

Dozens of coreboot userspace tools exist in the utils/ directory. Many more than we could ever cover. So I’ll explain some of the most used ones quickly.

cbfstool is a program that can edit the coreboot filesystem in the ROM. It can inject files into the ROM, remove them from it, rename them, and so on. Persistent configurations, such as a boot order file or things like a wallpaper for the payload can be put in there using cbfstool.

nvramtool is a tool that can edit the system’s CMOS, the volatile memory backed up by the little battery. nvramtool can edit the system CMOS directly, but it can also edit the default values in the coreboot ROM. CMOS values include things like the amount of shared memory for the video card, or whether the system should boot up after power failure or not.

flashrom has been talked about a lot already. It can read and write to and from the systems BIOS chip. It can dump the vendor BIOS and flash coreboot, using all kinds of interfaces, like SPI or internal programming.

ich9gen is a tool that can write firmware descriptors for Intel ICH9 southbridges. This is the chipset used in laptops like the Lenovo X200 I use. A firmware descriptor is basically a partition table of the flash chip. Intel hardware started requiring it around 2008, and coreboot couldn’t provide it. Before ich9gen existed, the descriptor had to be taken from the vendor BIOS dump and placed into coreboot. But after ich9gen was developed, ROM’s for this generation of hardware could be generated with a Free Software toolchain entirely.

ifdtool is the Intel Firmware Descriptor tool. Like I said when talking about ich9gen, firmware descriptors are required to boot up modern Intel platforms, so the chipset can understand the contents of the flash chip. And for everything newer than ICH9, there is no way to generate those descriptors. ifdtool can extract the required parts from vendor BIOS dumps. Those parts can then be compiled into coreboot by adding their paths to the config file before running make.

cbmem is used to read the coreboot logs from the buffer. This allows you to read logs all the way back until the system was powered on, up to the stage where the payload started your operating system’s kernel.

intelmetool is the Intel Management Engine tool. It can check the state in which the Intel ME is running. On my system, it will say that it’s not running and that the firmware is not present. On later systems, where the ME can be stripped to just the Bringup partition, it will say that the system is in the BUP stage and the firmware is corrupted, which is the best you can do there.

