
Hi !

THE BLAME GAME CONTINUES

WHY AM I HERE?

▸ Used FreeBSD since ~2000

▸ Love open source

▸ Been working in the payment industry since 2003

▸ Rare to hear the victims' side of a DDoS story

▸ ..except if it's a "success story" (ours is not.. this story has
no winners)

THE BLAME GAME CONTINUES

WHY ARE _WE_ HERE?

▸ Hosting in-house-developed SW on FreeBSD since 2003

▸ Authenticating users during on-line card payments

▸ SW for card issuers (your bank), merchants and processors
(Amazon, PayPal) and card companies (that other logo on
your card)

▸ Recently had a huge target painted on our backs

THE BLAME GAME
PREVIOUSLY ON

THE BLAME GAME

THE WORLD WE LIVE IN

▸ Three players
▸ Those writing the requirements
▸ Those covering their asses
▸ Those who are blamed in the end

▸ Several sets of requirements
▸ PCI DSS and 3DS
▸ Payment systems (Visa, MC, etc.)
▸ Legal (PSD2, GDPR, FSAs, local law, etc.)
▸ Customer specific

ABSURDITIES

▸ Photos of password files

▸ "Please document that grep(1)
supports regular expressions"

▸ Auditor storing evidence collected
from clients on Desktop (WinXP)

▸ ..also used for adult
entertainment..

▸ "root account must have a strong
password under split knowledge
and dual control"

▸ No, disabling your root account
won't do.

THE BLAME GAME
CONTINUES

THE BLAME GAME CONTINUES

WHAT I WANT TO COVER

▸ The anatomy of a DDoS campaign

▸ The personal cost - especially in a small organisation

▸ Defences that work

▸ Lessons learned

HEALTH: 85% AMMO: 10%

IN THE BEGINNING WAS PEACE AND QUIET

▸ Most merchants prefer liability shift - uses 3-D Secure

▸ Banks buy Access Control Servers to authenticate

▸ Shady merchants won't use 3-D Secure, and don't care

▸ Banks quietly reimburse cardholders, no need for drama

▸ Card companies implement "backup solutions"; if
authentication is broken, skip it

HEALTH: 85% AMMO: 10%

...ENTER THE PAYMENT SERVICES DIRECTIVE (PSD2)

▸ Requires (strong?) authentication for internet payments

▸ Remaining merchants have to implement support

▸ ..even those who don't care whose money is being
spent

▸ Bad guys pissed: Can't even buy crypto with stolen cards
anymore!

▸ ..let's kick over this authentication server and see what
happens

TRIAL RUNS
WHAT DOES THIS
BUTTON DO?

HEY, NOT TOO ROUGH

MARCH 2021: THE FIRST ATTACK WAVE

Let's face it: We were woefully unprepared

▸ Normal inbound traffic levels: ~10-20 Mbps

▸ War-time inbound traffic: >10Gbps and 1Mpps at ISP,
~200Kpps reaching us on our 1Gbps links

▸ Run-of-the-mill attacks: UDP, TCP SYN, ICMP

▸ Cheap garbage traffic

▸ "10 minutes free" DDoS platform sales campaigns

HEALTH: 50% AMMO: 10%

OK WHAT JUST HAPPENED..??

▸ "Backup solutions" effectively de-brick stolen cards

▸ ISP-owned DDoS mitigation platform of symbolic value:

▸ Running out-of-box config

▸ Three years out-of-date

▸ Not enabled for our networks(!)

▸ Secondary ISP mitigates by null-routing us in self-defence

▸ Laugh now - might make up for all our crying

halp

Sysadmin pleading to upstream ISP for help

THIS HURT

THE REAL COSTS

▸ Individual humans don't scale well

▸ Lack of sleep is only part of the problem

▸ ..it gets really personal, really quickly

▸ Anxiety, ruined birthdays, suffering families

▸ The price of doing a lot with little (and few)

▸ (Thanks, FreeBSD)

LEVEL UP!
WELL THAT WAS FUN

HURT ME PLENTY

AUGUST 2021: ROUND TWO

▸ July was quiet - vacation time?

▸ Increased volumes, new attack vectors

▸ Full TCP handshakes, some TLS

▸ Exploiting BGP bypasses ("forgotten" peers)

▸ Passing the 100Gbps, 10Mpps mark

▸ Time before countermeasures bypassed: 1-3 days

HEALTH: 40% AMMO: 30%

NOW WE KNOW THAT

▸ The attacks are clearly profitable

▸ Professionals at work: They go on holiday!

▸ No ransom notes: Instant payout

▸ But also: Attacks cost real money

▸ Cat-and-mouse: We really need to up the game

▸ ..make attacks prohibitively expensive

GOING ALL IN
WEARING US DOWN

ULTRA-VIOLENCE

OCTOBER 2021: THINGS GET PERSONAL

▸ DDoS mitigation works reasonably well

▸ Attackers pull all the stops:

▸ TLS-level exhaustion smoke screen

▸ Application stack profiling

▸ Custom layer 7 attack tooling

▸ Time before countermeasures bypassed: 5-15 minutes

▸ Mentally and physically devastating - for months

...WITHSTAND DENIAL-OF-SERVICE (DOS)
ATTACKS THAT COULD FORCE FALLBACK TO
LESS SECURE VERIFICATION METHODS OR
PROVIDE COVER FOR OTHER ATTACKS...

PCI guidance (for auditors)

HEALTH: 15% AMMO: 40%

HEALTH: 15% AMMO: 40%

WHY IS THIS A "BLAME GAME"?

▸ Requirements extremely vague

▸ Will certainly be read differently by the blaming party

▸ It's hard to work from under the bus

▸ Loss from fraud << loss from potential outage

▸ Remember the "backup solutions"?

▸ A DDoS is not an "incident", it's Force Majeure!

▸ (Assuming you've done a minimum of planning)

WHAT WORKS?
SO…

USE THE CLOUD, LUKE!

Customers, the Internet, and the bartender

BULLSHIT HOUR

HEALTH: 40% AMMO: 50%

BEEFY HARDWARE AND FAT PIPES

▸ FreeBSD (BSDrp) routers, 10GbE everywhere

▸ OPNsense firewalls, 10GbE everywhere

▸ Before: 1Gbps, two ISPs, either-or

▸ Now: 10Gbps, several ISPs, distributed traffic

HEALTH: 60% AMMO: 60%

SYNCOOKIES AND PF CONFIG

▸ Imported from OpenBSD, made multi-threaded

▸ Massive effect on state-exhaustion attacks

▸ Most defaults are from the modem era:

▸ No need to wait a minute for a TCP handshake to
complete

▸ No need to keep states around "forever"

▸ With VIMAGE-jails: Per-jail limits and rules!

HEALTH: 65% AMMO: 70%

NGINX CONFIG NASTIES

▸ Make sure handshakes are handled by all your CPUs

▸ Use rate limiting - tailored for each resource type

▸ Lower your timeouts - more defaults from the modem era

▸ return 444; is incredibly resource-saving

▸ Use it wherever you may be seeing 404/403 storms

▸ Fine-grained location statements and rules

▸ Reserve resources for monitoring - in nginx *and* back-end

HEALTH: 90% AMMO: 90%

CLOUDFLARE MAGIC TRANSIT

▸ They do BGP route announcement of our networks

▸ GRE tunnels from CF sites around the world

▸ Ingests, filters and shapes most traffic coming our way

▸ Our transit providers see only GRE traffic (we don't actually
announce to them unless Cloudflare falls over)

▸ Best of all: No keys outside the kingdom!

(but it's no "god mode")

HEALTH: 90% AMMO: 90%

L3/4 DDOS MITIGATION

▸ Kinda like e-mail greylisting:

▸ Deliberately sabotage ("challenge") TCP handshakes

▸ Well-behaved TCP implementations will retransmit

▸ Assumes attackers are poor and bots are stupid

▸ ..neither is true!

▸ Only works when you're the only game in town

▸ Remember, ricochet is a killer

SIGH

AH WHAT THE HELL...

NIGHTMARE

2022-NOW

▸ Attacks in the Tbps and >>100Mpps-scale

▸ Surgical strikes:

▸ Attackers know where it hurts

▸ ..and what we can't mitigate

▸ DDoS mitigation causes devastating side-effect

▸ Bots live behind end-users' ISPs, self defence kicks in

▸ Systems are fine, but users suffer

WHEN DO YOU PLAN TO SOLVE THIS?

Those who can solve this

HEALTH: 75% AMMO: 90%

HEALTH: 75% AMMO: 90%

WHY NOT LAYER 7 IN THE CLOUD?

▸ The obvious: GDPR, decrypting sensitive data in the cloud

▸ Less obvious: Technical constraints from 3rd parties

▸ Would it help? Not much:

▸ Even an L7 proxy in the cloud is protected

▸ The same interference will apply there

▸ May protect a single system from direct attack

▸ ..but won't prevent the side-effects

HEALTH: 75% AMMO: 90%

OTHER HELPFUL SUGGESTIONS

▸ Get more hardware!

▸ We do ~100k TLS handshakes/s. CF drops >1M/s.

▸ Do the math. Who's going to pay for that?

▸ Accelerate your TLS!

▸ Most EC/RSA hardware is for low core count servers

▸ Use proprietary TLS - open source is vulnerable!

▸ Don't get me started. I mean it. Don't.

BARTENDER COULD HAVE TOLD US THIS

LESSONS LEARNED

▸ The Internet is no longer a friendly place (duh!)

▸ Sustained DDoS attacks expose the "bus factor" in
spectacular new ways

▸ This kind of fight can not be fought alone

▸ Peace is temporary

▸ The best defence is making attacks expensive

▸ Don't be afraid of violating (some) standards - teapots
cost a lot more than 444s

AND THEY LIVED HAPPILY...

THANK YOU ALL!

▸ Contributors of all kinds

▸ Organisers of this event

▸ Everyone working to make the community tick

 Until next time..

NGINX CONFIGS

NITTY-GRITTY

NGINX CONFIG HACKS - GLOBAL
Adapt to your CPU count, leave (some) room for other stuff
worker_processes 8;
Each worker has at least two sockets; leave some headroom here
worker_rlimit_nofile 65536;

Works for us..
worker_cpu_affinity auto;
events {
 # We want round-robin-like handling of inbound requests
 accept_mutex on;
 # During war-time we want plenty of these; each one does very little work
 worker_connections 2048;
}

http {
 # Define rate limiting zones - totally application dependent!
 limit_req_zone $binary_remote_addr$request zone=request_5:100m rate=5r/s;

}

NITTY-GRITTY

NGINX CONFIG HACKS - SERVER
This is actually a kinda high value, but some people are slow and far away..
client_body_timeout 10s;

Attackers won't wait for data anyway, no reason to keep connections open
send_timeout 2s;

Don't sit on dead connections
reset_timedout_connection on;

And for the love of $deity: DO NOT use 'listen ... reuseport'!
This effectively limits handshakes to a single CPU core.

NITTY-GRITTY

NGINX CONFIG HACKS - LOCATIONS
Catch 403s from limit_except, pass to first location
error_page 403 /444.html;
location /444.html {
 return 444;
}

Be specific in your location blocks (better: have different ones for different
request types!)
location ~ ^/application/(known|endpoints)[^/.]* {
 # Refuse any other request type
 limit_except GET POST {
 deny all;
 }
 # If someone tries a GET on your POST-only endpoint, drop connection
 if ($request ~ "(GET|HEAD) +/application/(post-only|endpoints)/? +HTTP/") {
 return 444;
 }
 # Use rate limiting..
 limit_req zone=request_5 burst=7 delay=5;

 # Pass to a named backend
 proxy_pass http://applications;
}

NITTY-GRITTY

NGINX CONFIG HACKS - BACKENDS
First we define a backend for our applications:
upstream applications {
 server localhost:8180 max_conns=10000;
 zone applications 128k;
 keepalive 20;
}

Then we define another for monitoring:
upstream monitoring {
 server localhost:8182 max_conns=100;
 zone monitoring 32k;
 keepalive 2;
}

Finally make sure our monitoring endpoints use the dedicated back-end:
location ~ ^(/status/.*) {
 allow;
 deny all;
 proxy_pass http://monitoring;
}

