Buildbarn l
A distributed build cluster

Ed Schouten <ed@nuxi.nl>
https://github.com/buildbarn

History of Bazel

Timeline (1/4)

e ~2000: Google has a monorepo with shell script/Makefile build scripts.
o It turns out that becomes unmaintainable relatively quickly.
e ~2005: Makefiles are replaced with build tool written in Python.

o Every ‘package’ (directory) contains a BUILD file that is eval()ed by Python.
o Directives are Python function calls that are implemented by the build tool.

cc_library(cc_binary/(
name = “stringformatter?”, name = “hello”,
srcs = [“stringformatter.c”], srcs = [“hello.c”],
hdrs = [“stringformatter.h”], deps = [“:stringformatter”],

Timeline (2/4)

e ~2010: Blaze: rewrite of Python build tool in Java.
o Contains a primitive Python interpreter to parse existing BUILD files.
o Jjava_x*x(),cc_x(),py_x*(),etc.rules are all implemented inside Blaze in Java.
o Sandboxing: actions only ‘se€’ files that are part of theirdeps = [...].
o Remote caching/execution: ‘blaze -j 1000’ from behind your desk.

Google office Google data center

Timeline (3/4)

e 2015: Bazel: tidied up Open Source version of Blaze.
o Not extensible: mainly just java_x (), cc_x() and py_x () rules.
o No remote execution: existing version was too Google specific.

e 2015-2023: Many new features appear.
o Support for platforms other than Linux/x86, and a good notion of cross compilation.
o Starlark: use a Python-like language to design your own build rules.
o Support for fetching and source code and build rules remotely (HTTP, Git, etc.).

rust_library = rule(def _rust_Tlibrary_impl(ctx):
_rust_library_impl, ctx.actions.run(“rustc”, ...)
attrs = { return [DefaultInfo(...)]

“srcs”: attr.label_list(),
“deps”: attr.label_1list(),

1)

Timeline (4/4)

e Bazel gains support for remote caching and execution.
o 2017: Initial ‘RE’ protocol was designed by Google.
o 2018: Community efforts later on led to the release of ‘REv2'.
e Servers that implement REv2 start to appear:
o 2017: Uber releases Bazel Buildfarm, written in Java.
o 2018: Bloomberg & CodeThink release BuildGrid, written in Python.
o 2018: | started working on Buildbarn, written in Go.
e C(lients other than Bazel that use REv2 start to appear:
o Drop-in replacements for /usr/bin/cc: recc, Goma.
o Existing build systems add REv2 support: Pants, Please, BuildStream, Buck.

‘distcc/ccache/... did this two decades ago’

e ..exceptthatit only works for C/C++ compilation.
o REv2 supports remote execution of arbitrary UNIX commands.
e .. except that it requires that workers have toolchains/SDKs preloaded.
o REv2 allows clients to upload full SDKs to workers.
o Workers can be vanilla OS installations.
o Result: easier to achieve reproducibility of work.
e .. exceptthat it only speeds up builds.
o REv2 can also run unit/integration tests remotely and cache results.

REv2 is not a fad!
It is the de facto standard for distributed software builds.

REv2

Remote Execution... simplified

1. Call Execute(ExecuteRequest)

>
Bazel Build cluster

2. Receive ExecuteResponse

Building a project consists of hundreds/thousands of these calls. -

ExecuteRequest

ExecuteRequest

priority: int
y SymlinkNode
Action name: string
timeout: duration target: string
do_not_cache: bool A
0.rx

Y Y 0.*

Command Directory —> FileNode
arguments: []string A name: string
environment_variables: []string is_executable: bool
working_directory: string 0." y contents: [|byte
platform: Platform :
output_paths: [Jstring DirectoryNode

name: string

ExecuteResponse

ExecutedActionMetadata

LogFile 0.” ExecuteResponse
human_readable: bool cached_result: bool
contents: [Jbyte status: Status

message: string
OutputSymlink o
- \ 4
path: string < ActionResult
target: string
exit_code: int
0.* stdout_raw: [Jbyte

OutputFile

stderr_raw: [Jbyte

path: string

contents: [Jbyte

is_executable: bool

0.*

Y

OutputDirectory

path: string

A 4

1. 0.”

*

Y

0"\

worker: string

queued_timestamp: timestamp
worker_start_timestamp: timestamp
worker_completed_timestamp: timestamp
input_fetch_start_timestamp: timestamp
input_fetch_completed_timestamp: timestamp
execution_start_timestamp: timestamp
execution_completed_timestamp: timestamp
output_upload_start_timestamp: timestamp
output_upload_completed_timestamp: timestamp

SymlinkNode

name: string
target: string

A
0.*

FileNode

A name: string

is_executable: bool
contents: [|byte

DirectoryNode

name: string

Content Addressable Storage (CAS)

e Problem: ExecuteRequest and ExecuteResponse get big and repetitive.

o Input roots with SDKs can be hundreds of MBs in size.
o Build-edit-build cycles create nearly identical ExecuteRequests.

e Solution: place repetitive parts in shared storage.
o ExecuteRequest: Action, Command, Directory messages and file contents stored externally.
o ExecuteResponse: Tree messages and (log)file contents stored externally.
o Use content addressing: objects are identified by a Digest (i.e., SHA-256 + size).
m Automatic deduplication of identical data.
m Tamper proof Merkle tree: contents can be validated when loaded.
m Immutability of data makes caching trivial.

Remote Execution with the CAS

1. Compute ExecuteRequest, Action,
Command and Directories messages.

Y 5. Call Execute(ExecuteRequest)

\4

Bazel

A

6. Receive ExecuteResponse

2. Call FindMissingBlobs() on Digests

Build cluster

A 4

3. Receive list of objects that are missing

4. Upload missing objects

\

\ 4

7. Download Tree messages, stdout/stderr and output files.

Note: only communication involving Bazel is shown.

Action Cache (AC)

e Problem: protocol is still expensive for builds that are already cached.
o At least two round-trips: FindMissingBlobs() and Execute().
o FindMissingBlobs() size grows linear w.r.t. input root file count.
e Solution: let the client first query the Action Cache directly.
o GetActionResult(Digest of the Action) — ActionResult.
o AC size is minuscule compared to the CAS: about 1/1000th the size.
o AC s the only part of REv2 storage that can become poisoned.

Remote Execution with the CAS & AC

2. Call GetActionResult(ActionDigest)

Y

1. Compute ExecuteRequest, Action,
Command and Directories messages.

v

AC

3. Receive ActionResult if already executed

7. Call Execute(ExecuteRequest)

Bazel

A\ 4

A

8. Receive ExecuteResponse

4. Call FindMissingBlobs() on Digests

A4

Build cluster

N

5. Receive list of objects that are missing

6. Upload missing objects

CAS

N

\4

9. Download Tree messages, stdout/stderr and output files.

Note: steps 4 to 8 are skipped in case step 3 returns success.

REvVZ2 Summary

e RPC to run commands remotely: Execute().
o The client sends ExecuteRequests.
m References an Action, a Command, Directories, and individual files.
o The cluster sends back ExecuteResponses.
m References an ActionResult, Trees, and individual files.

e Data store #1: Content Addressable Storage (CAS).

o Stores Actions, Commands, Directories, Trees and individual files.
o Big. Cannot be poisoned. Safe to provide write access to all workers and clients.

e Data store #2: Action Cache (AC).

o Stores mapping of Action — ActionResult. A cache of previously run actions.
o Small. Can be poisoned. Restrict write access to trusted workers and clients!

4
N

The Buildbarn project

A fairly complete Buildbarn setup

Developer workstation

Buildbarn cluster

Bazel client bb_clientd

bb_storage:
On-prem cache

Web browser

Note: not all components are required. Just cherry-pick the parts you need!

. — bb_storage: <
bb_storage:] — <
RPC demultiplexing Content Add_ressable Storage &
Action Cache
[
> bb_browser /|
bb_scheduler

bb_worker

Y

bb_runner
(e.g., Ubuntu)

A typical worker pod running on Kubernetes

CAS & AC

bb_scheduler /

1. Worker obtains an
action from the
scheduler.

Container

bb_worker

Kubernetes pod

3. Worker instructs a
runner to spawn the

Container

build action.

2. Worker instantiates
input roots of actions
’ into a local directory.

emptyDir

x&

bb_runner

4. Runner spawns
build action as a

UNIX subprocess.
\ 4

5. Build action reads

Build action

relevant input files from I

the input root.

(N

Ideally, a pod has as
many runner containers
as may fit on a node.

Each runner container
has strict CPU &
memory limits.

4
N

bb_worker:
Input root population

Worker-level file cache

Executing on a worker

Uploading

w Fetching . =
Queued > —>» Running > outputs

inputs

» Completed

e Problem: Input root population can be a costly process.
o Download gigabytes from the CAS in case actions bring their own SDKs.
o In case of highly concurrent workers: lots of redundant disk space usage.

e Solution: Add a worker-level file cache.

o A single directory that contains a single copy of every recently used file.
o Cache hits: files are hardlinked from the cache into the input root.

o Cache misses: files are downloaded into the input root and hardlinked into the cache.
o Population time may become proportional to file count; not total file size.

The contents of the worker-level file cache

$ 1s -1 /worker/cache

-r-xr-xr-x 1
-r-—r-——-r—-
=[F==[F==[f==

—r=Xr—-Xr-—-Xx
—r=Xr=Xr-—X

H R R R

—r=Xr=Xr—-X

—r=Xr-xr-x
-r——r--r--
—r=Xr-xr-x
-r—-r--r--
-r--r--r--

H R R R R

—r=Xr=Xr-—X

root
root
root
root
root
root

root
root
root
root
root
root

root
root
root
root
root
root

root
root
root
root
root

2469
320
320
742

1141

6393
1913
3642
1440
3541

root 75928

Jan
Jan
Jan
Jan
Jan
Jan

Jan
Jan
Jan
Jan
Jan
Jan

P

I

2000
2000
2000
2000
2000
2000

2000
2000
2000
2000
2000
2000

000095eedb03648c4f9abaf74a248cchf5a2fb5c0f307ddb31d04bb32cfdf370-8258+x
00010c0e5a6aa2c95ac6b8163176a616fb7e6ff95e93eb040ab4cdb57bdce4dd-2469-x
000c00bad31d126b054c6ec7f3e02b27c0f9a4d579f987d3c4f879ceelbach81-320-x
000c00bad31d126b054c6ec7f3e02b27c0f9a4d579f987d3c4f879ceelbach81-320+x
00145314b959a6dfal6f7d37452f3cf358ef614bdf7b54a28ab9dce9117e31cf-742+x
001464d2ef94de500cb053cd345164d696F7f84cf38fa522c77327ab04d32982-1141+x

ffcl2c3075bal8eaad6dd60e730e06alec338216151e056a9c7ecfd74d280fd9-6393+x
ffd70c5181898b8b8el17f9f8a761f2d30793abebed370c739bd1136b34782b09¢c-1913-x
ffecdbd3f9badd71c6e5998418384817f0fe5b0ac69bab2ele40al3lfaf596a6c-3642+x
ffede6eabd976f361148ae9c7e4c7c31bba51db02493f05015d2145dbladead4-1440-x
ffeeb99fal9cac2db45fad444da20f2c52a157b87b836beelf91e18ddf8412¢c94-3541-x
fffeof6f1470c3a12c6588e26f37485b7fac3af83a6f3d52e2205d02d4a646bc-75928+x

$ sha256sum < f7fec7e9c5fec8265163391bb32716ac97deec644637020600869ae3f5cef793-10011+x
f7fec7e9c5fec8265163391bb32716ac97deec644637020600869ae3f5cef793

Lazy input root population

e Problem: Worker-level file cache may still perform poorly.

o Input roots are downloaded up front entirely, even if only a fraction is used.
o Requires all runners to share one file system: running out of space causes flakiness for all.

e Solution: Run builds inside a virtual file system offered by bb_worker.

o Starts build actions inside a placeholder input root directory.
m Accessing a placeholder directory: instantiate it, creating placeholder files inside.
m Accessing a placeholder file: read it from the CAS.
m CASread errors causes action to be killed, returning a retriable error.

o Build actions can create output files inside the input root directory.
m Quotas are only applied against output files.
m Exceeding quota causes action to be killed, returning a non-retriable error.

bb_worker with the virtual file system enabled

CAS

Kubernetes pod
Container Container
Worker creates a
FUSE file system
using go-fuse
<€ bb_worker FUSE file system Build action

Worker uses
LocalBlobAccess to
cache recently accessed
files and directories
loaded from the CAS.

LocalBlobAccess

Worker uses FilePool to store
output files created by the
build action. Files are
uploaded into the CAS after
completion.

FilePool

Build action reads
input files from, and
writes output files into
the FUSE file system

Recent developments in the virtual file system

e 2020: Initial release of the FUSE file system for bb_worker.
o Linux: use in-kernel FUSE driver, which works great.
o macO0S: use OSXFUSE, which isn’t always stable (and proprietary).
e 2022: FUSE file system refactored into a generic virtual file system.
o Added support for NFSv4.0 in addition to FUSE.
o macO0S 13.3+ systems can ‘mount -t nfs localhost’ the integrated NFSv4.0 server.
e 2023: File system access profiling.
o bb_worker can record which paths are accessed during build, and store those centrally.
Subsequent executions of similar actions reload the profile from central storage.

O
o Profile is used to load expected set of accessed files in the background, in parallel.
o Impact: Workers now spend <1% of their time fetching input files.

Layering of the virtual file system

Build/test actions

|
v v

Linux kernel FUSE driver macOS kernel NFSv4.0 client
go-fuse go-xdr "Sun RPC" server
VFS FUSE bindings NFSv4.0 server

| |
v v v v

Immutable files Symlinks Mutable directories Mutable files
FilePool

v v

FUSE handle allocator NFSv3/v4 handle allocator

Note: components in blue are maintained as part of the Buildbarn project

bb_scheduler

bb_scheduler overview

e Multiple levels of nested queues.

Scheduler has one platform queue for every distinct platform (Ubuntu, CentOS, macOS, etc.)
Every platform queue has one or more size class queues.
Every size class queue has a queue of running Bazel invocations.
Every Bazel invocation has a queue of scheduled operations (actions).
o Scheduler steers towards fairness between Bazel invocations.
e Scheduler keeps all queue state in memory; no persistency.
o Restart means that clients need to restart all current operations.
o Not an issue, considering that scheduler restarts don't happen frequently.

e (gRPC protocol and integrated web Ul for exploring the current worker state.

e Uses a simple and robust scheduler < worker protocol.
o Specific to Buildbarn. No consensus within community yet.

O O O O

Screenshot of the bb_scheduler web U

° 0 52

Buildbarn Scheduler

Build queue

Total number of operations: 01

o

Platform queues

Root invocation
Children Workers
Instance Size Queued Idle All
name prefix Platform properties class |Timeout| operations |Queued |Active|All|Executing |ldle |synchronizing |workers|Drains
h="x86_64"
m of = of of 2/3 as|7a ws| 80| o
h="x86_64"
[arch="x86_64" | os="centos" 0 - 0 of olo o| 8o 80 8| 0
o ST 0 o 0 of ofo 0[160 60| 160 0
arch="x86_64" | os="ubuntu" a . 0 o oo ol 10 10 0 o

S ————————————

bb_scheduler:
Worker size classes

Problem definition

e Resource requirements of actions follow a hockey stick curve.

@)

(@)

Almost all of them are single-threaded / don't use a lot of RAM.

Only a handful benefit from multi-threaded workers / need more RAM.

e Traditional solution: Multiple worker types with different platform properties.

O

O O O O

(@)

Requires annotating targets in BUILD files.

Race to the bottom: “I just want my test to run fast. Let me pick the largest worker!”
Hard to get right when multiple build configurations are used (e.g., release, debug, asan).
Bazel lacks granularity for doing this right (e.g., when using sharded tests).

Third-party libraries that ship with BUILD files cannot get it right for your cluster.
Annotations need to be revisited every time infrastructure is redesigned.

e Desired solution: Let Buildbarn sort it out itself.

Rough outline of the solution

Initial Size Class Cache

(ISCC)
2. Scheduler loads 5. Scheduler
statistics of previous updates statistics
executions of similar stored in the ISCC

actions from the ISCC

3. Scheduler uses
statistics to pick a size

class on which to run
1. Bazel sends the action

ExecuteRequest to bb_worker with

scheduler -
«——— | sizeclass 1

bb_scheduler
6. ExecuteResponse \ -

last execution is bbTworker with
returned 4. Upon failure, the size class 4

action is retried on the
largest size class

Y

Bazel

Note: arrows indicate directions of RPCs

Stats in ISCC for a single kind of action

message PreviousExecution {
oneof outcome {
google.protobuf.Empty failed = 1;
google.protobuf.Duration timed_out
google.protobuf.Duration succeeded

I
w N

+
+
message PerSizeClassStats {
// List of recent outcomes sorted by date, truncated to a configurable size.
// Only outcomes of actions that eventually succeeded are stored.
repeated PreviousExecution previous_executions = 1;

}

message PreviousExecutionStats {
map<uint32, PerSizeClassStats> size_classes = 1;

bb_scheduler web Ul with size classes

® |~

Buildbarn Scheduler

Build queue

Total number of operations: 3381
Platform queues
Root invocation
Instance Children Workers
name Platform Size Queued Idle Al
prefix properties class | Timeout | operations | Queued | Active | All| Executing | Idle | synchronizing | workers | Drains
1 L 0 0 3| 4 604 (996 382 1600 0
[0s="ubuntu" | 2 L 0 0 3| 4 362|758 319 1120 (0]
4 o 0 of 2|3 220|680 219 900 0
8 oo 0 0 2| 3 129 71 0 20 0

bb_browser

What is bb_browser?

Simple web Ul for REv2 data stores.

e Can display REv2 Actions, Commands, Directories, ActionResults and Trees.

e Can display Buildbarn specific extensions:

o UncachedActionResult: Stable copy of a historical ActionResult that's preserved in the CAS.
o PreviousExecutionStats: Build action timing information that’s stored in the ISCC.
o FileSystemAccessProfiles: Which input files are expected to be used.

e Other Buildbarn tools link to bb_browser.

o Every operation in bb_scheduler links to an Action page.
o bb_worker can let Bazel print UncachedActionResult links upon build failures.

Screenshots of bb_browser

Buildbarn Browser

Action

Timeout: o
Do not cache: no
*
Command
Arguments: clang -no-canonical-prefixes —fstack-protector -Xclang
—-fcolor-diagnostics —-fparse-all-comments -02 -MD -MF
bazel-out/linux_x86_64-opt/bin/mylibrary/hello.d -std=c++17
—Qunused-arguments -Werror -Wall -c mylibrary/hello.cpp -o
bazel-out/linux_x86_64-opt/bin/mylibrary/hello.o
Environment variables: PATH=/bin:/usr/bin:/usr/local/bin

PWD=/proc/self/cwd

Working directory:

Platform properties: os = centos
os_version = 8

Screenshots of bb_browser

Result
Exit code: Y Success |
Input files”
Mode Size Filename
drwxr-xr-x 91 bazel-out/

drwxr-xr-x 1381 external/

drwxr-xr-x 2017 mylibrary/

Copy bb_clientd path to clipboard Download as tarball

Output files

Mode Size Filename
-rw-r--r-— 217303 bazel-out/linux_x86_64-opt/bin/hello.d

—rw-r——r—— 30584 bazel-out/linux_x86_64-opt/bin/hello.o

Screenshots of bb_browser

Execution metadata

Worker: {"pod":"centos-8-7tv2s" "thread":"3"}

Timeline: 2021-04-27T20:14:53.751Z
Action added to the queue.
2021-04-27T20:14:53.758Z (*} +6.728033ms
Worker received the action.
2021-04-27T20:14:53.758Z () +101us
Worker started fetching action inputs.
2021-04-27T20:14:53.766Z () +8.461ms
Worker finished fetching action inputs.
Worker started executing the action command.
2021-04-27T20:15:25.098Z () +31.331623s
Worker completed executing the action command.
Worker started uploading action outputs.
2021-04-27T20:15:25.156Z @ +57527ms
Worker completed uploading action outputs.
Worker completed the action, including all stages.

Request metadata

Tool: bazel 4.0.0
Tool invocation ID: c2e38708-707d-48d5-b5¢c3-60ff73dcad63

Correlated invocations ID: b150798c-70ab-4256—-bad7-3352bb819ae7

Screenshots of bb_browser

Target ID: //mylibrary

Configuration ID: b4b08b6c9a846ca78019ead4d512ed7ec88b7bfa7c891f6f4fb7d784a4bdd6f4

POSIX resource usage

CPU time: 21.134037s user, 4.36146s system
Maximum resident set 951 MB

size:

Paging: 230806 reclaims, 10812 faults, 0 swaps
Context switches: 105037 voluntary, 2754 involuntary

File pool resource usage

Files created: 4

Peak usage: 4 files, having a total size of 248 kB
Reads: 10 operations, having a total size of 248 kB
Writes: 5 operations, having a total size of 248 kB

creenshots of bb_browser

Previous execution stats”

Outcomes on size class

Succeeded: 496 51369ms

Initial Pag ility: 0.78644 01
Outcomes on size class 2: Succesded: 620.55704ms | Succeeded: 472.478806ms | Succeeded: 476.777883ms | Succeeded: 546.718019ms

ial PageRank probability: 0.12715204687951887

Outcomes on size class 4: Succeeded: 486.766878ms | Succeeded: 477.423617ms | Succeeded: 562.825536ms | Succeeded: 544.528539ms
Succeeded: 476.500153ms | Succeeded: 482.067653ms | Succeeded: 556.614016ms | Succeeded: 489.279381ms

Initial ility: 0.0455979:

g

Outcomes on size class 8: Succeeded: 507.327615ms | Succeeded: 489.174529ms | Succeeded: 563.567885ms | Succeeded: 649.3227ams
Initial Pag ility: 0.0 1353

Scatter plot of outcomes: 06

Execution time (s)
°

00

Size class 1 Size class 2 Size class 4 Size class 8

Screenshots of bb_browser

< (inl]

Previous execution stats”

Outcomes on size class 1: Timed out: 13.885910950s
Initial PageRank probability: 0.14193169848417356

Outcomes on size class 2: Timed aut: 108
Initial PageRank probability: 0.0920467110233448

Outcomes on size class 4:
Initial PageRank probability: 0.14193169848417347

Outcomes on size class 8:
e

Initial Pag

Scatter plot of outcomes:

g s

=

g

2

g

g

]

5]
o

itk

o

Size class | Size class 2 Size class 4 Size class 8

Screenshots of bb_browser

oo M- <

Buildbarn Browser

Input directory

Mode Size Filename

drwxr-xr-x 2688 asyneie/
drwxr-xr-x 171 collections/
drwxr-xr-x 169 cencurrent/

drwxr=xr-x 873 contig—3-9-xB86-64—Linux—gnd/

drwxr-xr-x 515 ctypes/

drwxr-xr-x 431 eurses/

drwxr=xr-x 337 dbm/
drwxr=xr-x 2656 distutils/
drwxr-xr-x 1970 email/
drwxr-xr-x 10711 encodings/
drwxr-xr-x 348 ensurepip/
drwxr-xr-x 264 ptmt/

drwxr-xr-x 440 http/

drwxr-xr-x 800 importlib/

S ——

Q&A

