
Buildbarn
A distributed build cluster

Ed Schouten <ed@nuxi.nl>
https://github.com/buildbarn

History of Bazel

● ~2000: Google has a monorepo with shell script/Makefile build scripts.
○ It turns out that becomes unmaintainable relatively quickly.

● ~2005: Makefiles are replaced with build tool written in Python.
○ Every ‘package’ (directory) contains a BUILD file that is eval()ed by Python.
○ Directives are Python function calls that are implemented by the build tool.

Timeline (1/4)

cc_library(
 name = “stringformatter”,
 srcs = [“stringformatter.c”],
 hdrs = [“stringformatter.h”],
)

cc_binary(
 name = “hello”,
 srcs = [“hello.c”],
 deps = [“:stringformatter”],
)

● ~2010: Blaze: rewrite of Python build tool in Java.
○ Contains a primitive Python interpreter to parse existing BUILD files.
○ java_*(), cc_*(), py_*(), etc. rules are all implemented inside Blaze in Java.
○ Sandboxing: actions only ‘see’ files that are part of their deps = [...].
○ Remote caching/execution: ‘blaze -j 1000’ from behind your desk.

Timeline (2/4)

Timeline (3/4)

● 2015: Bazel: tidied up Open Source version of Blaze.
○ Not extensible: mainly just java_*(), cc_*() and py_*() rules.
○ No remote execution: existing version was too Google specific.

● 2015-2023: Many new features appear.
○ Support for platforms other than Linux/x86, and a good notion of cross compilation.
○ Starlark: use a Python-like language to design your own build rules.
○ Support for fetching and source code and build rules remotely (HTTP, Git, etc.).

rust_library = rule(
 _rust_library_impl,
 attrs = {
 “srcs”: attr.label_list(),
 “deps”: attr.label_list(),
 })

def _rust_library_impl(ctx):
 ctx.actions.run(“rustc”, ...)
 return [DefaultInfo(...)]

Timeline (4/4)

● Bazel gains support for remote caching and execution.
○ 2017: Initial ‘RE’ protocol was designed by Google.
○ 2018: Community efforts later on led to the release of ‘REv2’.

● Servers that implement REv2 start to appear:
○ 2017: Uber releases Bazel Buildfarm, written in Java.
○ 2018: Bloomberg & CodeThink release BuildGrid, written in Python.
○ 2018: I started working on Buildbarn, written in Go.

● Clients other than Bazel that use REv2 start to appear:
○ Drop-in replacements for /usr/bin/cc: recc, Goma.
○ Existing build systems add REv2 support: Pants, Please, BuildStream, Buck.

● … except that it only works for C/C++ compilation.
○ REv2 supports remote execution of arbitrary UNIX commands.

● … except that it requires that workers have toolchains/SDKs preloaded.
○ REv2 allows clients to upload full SDKs to workers.
○ Workers can be vanilla OS installations.
○ Result: easier to achieve reproducibility of work.

● … except that it only speeds up builds.
○ REv2 can also run unit/integration tests remotely and cache results.

REv2 is not a fad!
It is the de facto standard for distributed software builds.

‘distcc/ccache/… did this two decades ago’

REv2

Remote Execution… simplified

Building a project consists of hundreds/thousands of these calls.

ExecuteRequest

ExecuteResponse

● Problem: ExecuteRequest and ExecuteResponse get big and repetitive.
○ Input roots with SDKs can be hundreds of MBs in size.
○ Build-edit-build cycles create nearly identical ExecuteRequests.

● Solution: place repetitive parts in shared storage.
○ ExecuteRequest: Action, Command, Directory messages and file contents stored externally.
○ ExecuteResponse: Tree messages and (log)file contents stored externally.
○ Use content addressing: objects are identified by a Digest (i.e., SHA-256 + size).

■ Automatic deduplication of identical data.
■ Tamper proof Merkle tree: contents can be validated when loaded.
■ Immutability of data makes caching trivial.

Content Addressable Storage (CAS)

Remote Execution with the CAS

Note: only communication involving Bazel is shown.

● Problem: protocol is still expensive for builds that are already cached.
○ At least two round-trips: FindMissingBlobs() and Execute().
○ FindMissingBlobs() size grows linear w.r.t. input root file count.

● Solution: let the client first query the Action Cache directly.
○ GetActionResult(Digest of the Action) → ActionResult.
○ AC size is minuscule compared to the CAS: about 1/1000th the size.
○ AC is the only part of REv2 storage that can become poisoned.

Action Cache (AC)

Remote Execution with the CAS & AC

Note: steps 4 to 8 are skipped in case step 3 returns success.

● RPC to run commands remotely: Execute().
○ The client sends ExecuteRequests.

■ References an Action, a Command, Directories, and individual files.
○ The cluster sends back ExecuteResponses.

■ References an ActionResult, Trees, and individual files.

● Data store #1: Content Addressable Storage (CAS).
○ Stores Actions, Commands, Directories, Trees and individual files.
○ Big. Cannot be poisoned. Safe to provide write access to all workers and clients.

● Data store #2: Action Cache (AC).
○ Stores mapping of Action → ActionResult. A cache of previously run actions.
○ Small. Can be poisoned. Restrict write access to trusted workers and clients!

REv2 Summary

The Buildbarn project

A fairly complete Buildbarn setup

Note: not all components are required. Just cherry-pick the parts you need!

A typical worker pod running on Kubernetes

bb_worker:
Input root population

● Problem: Input root population can be a costly process.
○ Download gigabytes from the CAS in case actions bring their own SDKs.
○ In case of highly concurrent workers: lots of redundant disk space usage.

● Solution: Add a worker-level file cache.
○ A single directory that contains a single copy of every recently used file.
○ Cache hits: files are hardlinked from the cache into the input root.
○ Cache misses: files are downloaded into the input root and hardlinked into the cache.
○ Population time may become proportional to file count; not total file size.

Worker-level file cache

$ ls -l /worker/cache
-r-xr-xr-x 1 root root 3259 Jan 1 2000 000095eedb03648c4f9abaf74a248ccbf5a2fb5c0f307ddb31d04bb32cfdf370-3259+x
-r--r--r-- 1 root root 2469 Jan 1 2000 00010c0e5a6aa2c95ac6b8163176a616fb7e6ff95e93eb040ab4cdb57bdce4d0-2469-x
-r--r--r-- 1 root root 320 Jan 1 2000 000c00bad31d126b054c6ec7f3e02b27c0f9a4d579f987d3c4f879cee1bacb81-320-x
-r-xr-xr-x 1 root root 320 Jan 1 2000 000c00bad31d126b054c6ec7f3e02b27c0f9a4d579f987d3c4f879cee1bacb81-320+x
-r-xr-xr-x 1 root root 742 Jan 1 2000 00145314b959a6dfa16f7d37452f3cf358ef614bdf7b54a28ab9dce9117e31cf-742+x
-r-xr-xr-x 1 root root 1141 Jan 1 2000 001464d2ef94de500cb053cd345164d696f7f84cf38fa522c77327ab04d32982-1141+x
...
-r-xr-xr-x 1 root root 6393 Jan 1 2000 ffc12c3075ba18eaa46dd60e730e06a1ec338216151e056a9c7ecfd74d280fd9-6393+x
-r--r--r-- 1 root root 1913 Jan 1 2000 ffd70c5181898b8b8e17f9f8a76f2d30793abebed370c739bd1136b34782b09c-1913-x
-r-xr-xr-x 1 root root 3642 Jan 1 2000 ffecdbd3f9ba0d71c6e59984f8384817f0fe5b0ac69ba62e1e40a31faf596a6c-3642+x
-r--r--r-- 1 root root 1440 Jan 1 2000 ffede6eabd976f361148ae9c7e4c7c31bba51db02493f05015d2145db1a4ea44-1440-x
-r--r--r-- 1 root root 3541 Jan 1 2000 ffeeb99fa19cac2db45fa444da20f2c5aa157b87b836bee1f91e18ddf8412c94-3541-x
-r-xr-xr-x 1 root root 75928 Jan 1 2000 fffe9f6f1470c3a12c6588e26f37485b7fac3af83a6f3d52e2205d02d4a646bc-75928+x

$ sha256sum < f7fec7e9c5fec8265163391bb32716ac97deec644637020600869ae3f5cef793-10011+x
f7fec7e9c5fec8265163391bb32716ac97deec644637020600869ae3f5cef793

The contents of the worker-level file cache

● Problem: Worker-level file cache may still perform poorly.
○ Input roots are downloaded up front entirely, even if only a fraction is used.
○ Requires all runners to share one file system: running out of space causes flakiness for all.

● Solution: Run builds inside a virtual file system offered by bb_worker.
○ Starts build actions inside a placeholder input root directory.

■ Accessing a placeholder directory: instantiate it, creating placeholder files inside.
■ Accessing a placeholder file: read it from the CAS.
■ CAS read errors causes action to be killed, returning a retriable error.

○ Build actions can create output files inside the input root directory.
■ Quotas are only applied against output files.
■ Exceeding quota causes action to be killed, returning a non-retriable error.

Lazy input root population

bb_worker with the virtual file system enabled

● 2020: Initial release of the FUSE file system for bb_worker.
○ Linux: use in-kernel FUSE driver, which works great.
○ macOS: use OSXFUSE, which isn’t always stable (and proprietary).

● 2022: FUSE file system refactored into a generic virtual file system.
○ Added support for NFSv4.0 in addition to FUSE.
○ macOS 13.3+ systems can ‘mount -t nfs localhost’ the integrated NFSv4.0 server.

● 2023: File system access profiling.
○ bb_worker can record which paths are accessed during build, and store those centrally.
○ Subsequent executions of similar actions reload the profile from central storage.
○ Profile is used to load expected set of accessed files in the background, in parallel.
○ Impact: Workers now spend <1% of their time fetching input files.

Recent developments in the virtual file system

Layering of the virtual file system

Note: components in blue are maintained as part of the Buildbarn project

bb_scheduler

bb_scheduler overview

● Multiple levels of nested queues.
○ Scheduler has one platform queue for every distinct platform (Ubuntu, CentOS, macOS, etc.)
○ Every platform queue has one or more size class queues.
○ Every size class queue has a queue of running Bazel invocations.
○ Every Bazel invocation has a queue of scheduled operations (actions).
○ Scheduler steers towards fairness between Bazel invocations.

● Scheduler keeps all queue state in memory; no persistency.
○ Restart means that clients need to restart all current operations.
○ Not an issue, considering that scheduler restarts don’t happen frequently.

● gRPC protocol and integrated web UI for exploring the current worker state.
● Uses a simple and robust scheduler ↔ worker protocol.

○ Specific to Buildbarn. No consensus within community yet.

Screenshot of the bb_scheduler web UI

bb_scheduler:
Worker size classes

● Resource requirements of actions follow a hockey stick curve.
○ Almost all of them are single-threaded / don’t use a lot of RAM.
○ Only a handful benefit from multi-threaded workers / need more RAM.

● Traditional solution: Multiple worker types with different platform properties.
○ Requires annotating targets in BUILD files.
○ Race to the bottom: “I just want my test to run fast. Let me pick the largest worker!”
○ Hard to get right when multiple build configurations are used (e.g., release, debug, asan).
○ Bazel lacks granularity for doing this right (e.g., when using sharded tests).
○ Third-party libraries that ship with BUILD files cannot get it right for your cluster.
○ Annotations need to be revisited every time infrastructure is redesigned.

● Desired solution: Let Buildbarn sort it out itself.

Problem definition

Rough outline of the solution

Note: arrows indicate directions of RPCs

Stats in ISCC for a single kind of action
message PreviousExecution {
 oneof outcome {
 google.protobuf.Empty failed = 1;
 google.protobuf.Duration timed_out = 2;
 google.protobuf.Duration succeeded = 3;
 }
}
message PerSizeClassStats {
 // List of recent outcomes sorted by date, truncated to a configurable size.
 // Only outcomes of actions that eventually succeeded are stored.
 repeated PreviousExecution previous_executions = 1;
 ...
}
message PreviousExecutionStats {
 map<uint32, PerSizeClassStats> size_classes = 1;
 ...
}

bb_scheduler web UI with size classes

bb_browser

Simple web UI for REv2 data stores.

● Can display REv2 Actions, Commands, Directories, ActionResults and Trees.
● Can display Buildbarn specific extensions:

○ UncachedActionResult: Stable copy of a historical ActionResult that’s preserved in the CAS.
○ PreviousExecutionStats: Build action timing information that’s stored in the ISCC.
○ FileSystemAccessProfiles: Which input files are expected to be used.

● Other Buildbarn tools link to bb_browser.
○ Every operation in bb_scheduler links to an Action page.
○ bb_worker can let Bazel print UncachedActionResult links upon build failures.

What is bb_browser?

Screenshots of bb_browser

Screenshots of bb_browser

Screenshots of bb_browser

Screenshots of bb_browser

Screenshots of bb_browser

Screenshots of bb_browser

Screenshots of bb_browser

Q&A

