The road to TLS 1.3

Tom Tervoort

1. Introduction to TLS
2. Problems and vulnerabilities

3. Design of TLS 1.3

~

. Remaining issues

Introduction to TLS

The initial problem

Welcome to Amazon.com
Books!

One million titles,
consistently low prices.

(If you explore just one thing, make it cur personal notification service. We think it's very cooll)

SPoTLIGHT! -- AucusT 16TH
These are the books we love, offered at Amazon com low prices. The spothight moves EVERY
day so please come often.

One Muiion TiTLEs
Search Amazon com's million title catalog by author, subject, title, keyword, and more... Or take
alook at the books we recommend in over 20 categones... Check out our customer reviews and
the award winners from the Hugo and Nebula to the Pulitzer and Nobel .. and bestsellers are
30% off the publishers list...

The initial problem

e Early 90’s: advent of the web and e-commerce
e Shopping online involves transmitting credit card numbers

e ... but the internet is an untrusted network

The solution: a secure channel

e Cryptographically protect a connection between two parties

e Protect against sniffing, spoofing, tampering, replaying, reordering
etc.

e lIdentification: prove knowledge of a secret key

e Assumption: attacker has full control over the network

e However, the attacker has no control over the end-points

e How realistic is this?

TLS/SSL: a secure channel on ‘layer 41’

Application/presentation/session | «—— signal, PGP, ...

«——— TS
| Transport |
| Metwork |<— IPsec
| Data Link | «——— WPA2, MACsec
| Physical |

e TLS requires a reliable transport layer protocol; i.e. TCP
e Alternative for (unicast) UDP: DTLS
e Currently in development: TLS for QUIC

TLS vs. SSL

SSL: Secure Sockets Layer

TLS: Transport Layer Security
TLS is SSL'’s successor
Six versions: SSL 2.0, SSL 3.0, TLS 1.0, TLS 1.1, TLS 1.2, TLS 1.3

Three sub-protocols

e Handshake protocol
e Negotiate protocol version and ciphers
e Establish session keys (asymmetric cryptography)
e Authenticate server (and optionally client)
e Record protocol
e Encrypted/authenticated communications
e Replay/reorder protection
e Alert protocol

e Notifications and errors
e Plaintext or encrypted

The TLS 1.2 handshake

Client Server

ClientHello I

ServerHello

Certificate
ServerKeyExchange
ServerHelloDone

ClientKeyExchange
ChangeCipherSpec

Finished
ChangeCipherSpec
Finished
ApplicationData I & I ApplicationData

Image source: Tim Taubssrt

Authentication within TLS

e How does Alice know she's talking to Bob?
e Step 1: verify that Bob owns a private key matching a certain public
key
e Digitally sign part of handshake (including Alice’s nonce)
e Incorporate in key exchange protocol, then verify Alice and Bob
share the same keys

Authentication within TLS

e How does Alice know about Bob's public key?
e Step 2: Bob presents a certificate, which contains:

e His public key

Information about his identity (e.g. domain name, e-mail address)
e Information about certificate validity (e.g. expiration date)
e A signature by a certificate authority (CA)

e The CA vouches that the certificate information is accurate
e Bob has proved the key-identity link to the CA

10

Authentication within TLS
= (E0y=E0=E0
I~ M~ M~

AddTrust External ~ PositiveSSL CA 2 api.example.com
CA Root

e How does Alice know she can trust the CA?
e Step 3: Bob sends the CA’s certificate chain:

e Intermediate certificate: validate and move up
e Root certificate: should be in Alice's trust store

Image source: Sasha Repgin

Which root certificates to trust?

e Opportunistic encryption: trust everything

e No protection against man-in-the-middle attacks

Simple approach: store single certificate in the application

Corporate Public Key Infrastructure (PKI)
e Admin distributes company trust store
e Browsers: worldwide PKI

e Browsers trust about 100 CA’s to each authenticate the entire
internet

12

Problems and vulnerabilities

SSL 1.0

e Never released
e Initially did not authenticate packets, and had no replay protection

e Later: authentication with CRC checksums, easy to break

13

SSL 2.0

e Released by Netscape in 1995
e Handshake messages not protected

e Man-in-the-middle can force both parties to use weaker cryptography

e The redesigned SSL 3.0 was released one year later

14

SSL 3.0: Padding oracle attack

e Open question during SSL design: encrypt-then-authenticate, or the
other way around?

e Chose authenticate-then-encrypt
e When decryption fails: decryption_failed error

e When decryption succeeds but integrity check fails:
bad_record_mac error

e Vaudenay in 2002: type of error reveals information about plaintext

e Attacker can exploit this to completely decrypt communications

15

TLS 1.0: BEAST

e TLS 1.0 did not implement CBC encryption ‘by the book’
e Bard in 2006: published “a challenging but feasible” attack
e Did not seem exploitable in HTTPS

e Duong and Rizzo in 2011: BEAST attack
e Stole cookies with a Java applet
e Lot of publicity

e TLS vulnerabilities became a popular research subject

16

CRIME

e By design: TLS does not hide message length

e Useful feature: TLS compression

e How well a message compresses reveals information about its content
e Theoretical vulnerability: compression-oracle attack

e BEAST researchers in 2012: not-so-theoretical attack against
HTTPS

e Attackers can steal cookies

17

Artefacts of the Crypto Wars

Until 1996: U.S. export controls on cryptography

Maximum key size for exported products: 40 bits

e Breakable by U.S. government in the 90’s
e And now, by anyone else

Netscape: “U.S. edition” and “International edition”

e Only 40-bit ciphers in international edition
e American servers: can support both strong and export crypto
e Important reason for cipher negotiation mechanism

e Export cryptography stuck around for compatibility reasons

18

Downgrade attacks

e Intention: client and server pick strongest mutually supported
protocol and cipher

e In practice: attacker could intervene
e POODLE attack: downgrade to SSL 3.0, enabling padding oracle
attack

e DROWN, FREAK and LOGJAM: exploit export crypto to achieve
man-in-the-middle attack

e DROWN and LOGJAM work even if the client does not support
export ciphers

19

Weak cryptography: “it’s only theoretical”

e Five original options for symmetric encryption
e DES

e Diffie and Hellman in 1977: DES cipher is insecure

e 1997 DESCHALL Project: publicly cracked; complete key recovery
e RC4

e Roos in 1995: statistical biases in keystream
e Vanhoef and Piessens in 2015: decrypt an HTTP cookie in 75 hours

3DES, IDEA, RC2

e As used in TLS: not suitable for encrypting large amounts of data

e Bhargavan and Leurent in 2016: HTTP cookie decrypted in two days
(Sweet32)

20

Weak cryptography: “it’s only theoretical”

e Bleichenbacher in 1998: attack on RSA encryption with PKCS#1
padding

e Still used by TLS 1.2, with special mitigations

e ROBOT attack in 2017: mitigations insufficient

21

More complexity, more bugs

More complexity, more bugs

= GSStatus

SSLVenfySmnedServerKeyExchange SSLContext ‘ctx,

isRasa, SS5LBuffer signedParams,

uintB_t <“signature, UIntlié aturelen)
{
CEStatus err;
SSLBuffer hashOut, hashCtx, clientRandom, serverRandom;

hashes [SSL_SHAL | DIGE ST_LEN + SSL_MDS_DIGEST_LEN];

uintg
signedHashes;
uintB_t “dataToSign;
size_t dataToSignLen;
if ((err = ReadyHash(sSSLHashSHAL, =
gote Yfail:
if = SSI.\HiShE'Hnl

if ((ezz = SSLHlshSHAl.-'
gote +fa
ESLHashEHAL. u

goto +fail;

err = gslRawVerify(ctx

I'* plaintext =/
/* plaintext length =/

signaturelen) ;

zzezlog ("§SLD

Exch : sslRawVerify "
"returned id\—x" :

goto +£

23

Security vs. performance

Client Server
| ClientHello I »
ServerHello
Certificate
ServerKeyExchange
ServerHelloDone

ClientKeyExchange
ChangeCipherSpec

Finished
ChangeCipherSpec
Finished
| ApplicationData I- a 'I ApplicationData |

e Full key exchange: 1.5/2 round trips (not counting TCP handshake)
e 1-RTT shortcuts possible, but sacrifice forward secrecy 24

Design of TLS 1.3

Major improvements

Remove (potentially dangerous) legacy features

Simplify the protocol

Encrypt more

Reduce handshake round-trips

25

Less is mo features

e Unnecessary/dangerous features to be scrapped:
e Key exchange methods without forward secrecy
e Renegotiation mechanism
e Custom Diffie-Hellman parameters

e Compression

26

Less is more: ciphers

TLS_DH_anon_EXPORT WITH_DES46_CBC SHA

anon WITH CAMELLIA 128 CBC_SHA
anon WITH CAMELLIA 256 CBC_SHA
anon_WITH DES_CBC_SHA
anon_WITH RC4_128_MD5
anon_WITH_SEED CBC_SHA
DSS_EXPORT WITH DES40 CBC_SHA
DSS_WITH 3DES_EDE_CBC_SHA
DSS_WITH AES 128 CBC_SHA
DSS_WITH AES 128 CBC_SHA256
DSS_WITH AES 128 GCM_SHA256
DSS_WITH_AES 256_CBC_SHA
DSS_WITH_AES 256_CBC_SHA256
DSS_WITH_AES_256_GCM_SHA384
"DSS_WITH_CAMELLTA 128_CBC_SHA

TLS_DHE DSS_WITH_AES 256_GCM_SHA384

TLS_DHE_DSS WITH_CAMELLIA 128 CBC_SHA
TLS_DHE_DSS WITH_CAMELLIA 256_CBC_SHA
TLS_DHE_DSS_WITH DES_CBC_SHA
TLS_DHE_DSS_WITH_RC4_128 SHA
TLS_DHE_DSS_WITH SEED_CBC_SHA
TLS_DHE_RSA_EXPORT WITH DES40_CBC_SHA
TLS DHE_RSA WITH_3DES_EDE CBC SHA
TLS_DHE_RSA_WITH_AES_128 CBC_SHA
TLS_DHE RSA WITH AES 128 CBC_SHA256
_DHE_RSA_WITH_AES 128 GCM_SHA256
DHE_RSA_WITH_AES_256_CBC_SHA
DHE_RSA_WITH_AES 256 _CBC_SHA256
DHE_RSA WITH_AES 256 GCM_SHA384.
DHE_RSA WITH_CAMELLIA 128 CBC_SHA
DHE_RSA WITH_CAMELLIA 256 CBC_SHA
DHE_RSA WITH DES_CBC_SHA
DHE RSA WITH_SEED_CBC SHA
ECDH_anon_WITH_3DES_EDE_CBC_SHA
ECDH_anon_WITH AES 128 CBC_SHA
ECDH_anon_WITH AES 256_CBC_SHA
ECDH_anon_WITH_NULL_SHA
ECDH_anon WITH RC4 128 SHA
_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDH_ECDSA_WITH_AES 256_GCM_SHA384
TLS_ECDH_ECDSA_WITH_CAMELLIA 128 CBC_SHA256
TLS_ECDH_ECDSA_WITH_CAMELLTA 256_CBC_SHA384
TLS_ECDH_ECDSA_WITH_NULL_SHA
TLS_ECDH_ECDSA_WITH RC4_128_SHA
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDH_RSA WITH_AES_128 CBC_SHA
TLS_ECDH_RSA_WITH_AES 128 CBC_SHA256
TLS_ECDH_RSA_WITH_AES 128 GCM_SHA256
TLS_ECDH_RSA_WITH_AES 256 CBC_SHA
TLS_ECDH RSA_WITH_AES 256_CBC_SHA384
TLS_ECDH_RSA_WITH_AES 256 GCM_SHA384
TLS_ECDH_RSA_WITH CAMELLIA 128 _CBC_SHA256
TLS_ECDH_RSA_WITH CAMELLIA 256_CBC_SHA384
TLS_ECDH_RSA_WITH NULL_SHA
TLS_ECDH_RSA WITH RC4_128 SHA
TLS_ECDHE ECDSA_WITH 3DES_EDE_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128 CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA WITH_ AES 256 _CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_ECDSA WITH_AES 256 GCM_SHA384
TLS_ECDHE_ECDSA WITH CAMELLIA 128 CBC_SHA25
TLS_ECDHE_ECDSA WITH CAMELLIA 256 _CBC_SHA38|
TLS_ECDHE_ECDSA_WITH NULL_SHA
TLS_ECDHE_ECDSA WITH RC4_128 SHA
TLS_ECDHE RSA_WITH 3DES_EDE_CBC_SHA
TLS_ECDHE RSA_WITH AES 128 CBC SHA
TLS_ECDHE_RSA_WITH_AES 128 CBC_SHA256
TLS ECDHE RSA_WITH_AES 128 GCM_SHA256
TLS ECDHE RSA_WITH_AES 256_CBC_SHA
TLS_ECDHE RSA_WITH_AES 256 _CBC_SHA384
TLS_ECDHE RSA_WITH_AES 256_GCM_SHA384
TLS_ECDHE_RSA_WITH CAMELLIA 128 CBC SHA256
TLS_ECDHE RSA_WITH CAMELLIA 256_CBC_SHA384
TLS_ECDHE RSA_WITH NULL_SHA
TLS_ECDHE_RSA WITH RC4_128_SHA
TLS_GOSTR341001 WITH 28147 CNT_IMIT
TLS_GOSTR341001 WITH NULL_GOSTR3411
TLS_GOSTR341094 WITH 28147 CNT_IMIT
TLS_GOSTR341094 WITH NULL GOSTR3411
TLS_PSK_WITH_3DES_EDE_CBC_SHA
TLS_PSK_WITH AES_128 CBC_SHA
TLS_PSK_WITH _AES_256_CBC_SHA
TLS_PSK_WITH RC4_128_SHA
TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA
TLS_RSA_EXPORT1024 WITH RC4_56_SHA
TLS_RSA_EXPORT_WITH_DES40_CBC_SHA
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MDS
TLS_RSA_EXPORT_WITH RC4_46_MDS5

TLS_RSA _WITH_ 3DES_EDE_CBC_SHA

TLS RSA WITH AES 128 (E(SHA

TLS RSA WITH AES 128 (E(SHA256

TLS RSA WITH AES 128 G(M SHA256

TLS RSA WITH AES 256 (E(SHA

TLS RSA WITH AES 256 (E(SHA256
TLS_RSA_WITH_AES_256_GCM_SHA384
TLS_RSA_WITH_CAMELLIA_ 128 CBC_SHA
TLS_RSA WITH CAMELLIA 256 CBC_SHA
TLS_RSA_WITH DES CBC SHA
TLS_RSA_WITH_IDEA CBC SHA
TLS_RSA_WITH_NULL MD5

TLS RSA_WITH NULL_SHA
TLSRSA WITH NULL_SHA256
TLSRSA WITH RC4_128 MDS

TLSRSA WITH RC4_128 SHA

TLS RSA_WITH SEED_CBC_SHA

Less is more: ciphers

TLS_AES_128_GCM_SHA256
TLS_AES_256_GCM_SHA384
TLS_CHACHA20_POLY1305_SHA256
TLS_AES_128_CCM_SHA256
TLS_AES_128_CCM_8_SHA256

28

Encrypting the handshake

e All handshake messages after ServerHello are encrypted

e This includes extension info and server/client certificates

29

The new handshake

Client Server
ClientHello I
+key_share
ServerHello
+key_share
EncryptedExtensions
Certificate
CertificateVerify
Finished
| Finished I
| ApplicationData I C I ApplicationData

Image source: Tim Taybert

3

Handshake comparison

Client Server
ClientHello
ServerHello Client Server
Certificate -
ClientHello
! nange “key_share
| SserverHellobone ServerHello
ke share
ClientKeyExchange EncryptedExtensions
ChangeCipherSpec Certificate
Finished —_— CertificateVerify
‘ Finished

[changecipherspec

—_— Finished |1 Finished E——
ApplicationData 8 [aplicationdata | [Applicationdata___| a ApplicationData

Image source: Tim Taybert
31

0-RTT handshake

Client Server

ClientHello
+key_share
+early_data

ApplicationData
end_of_early_data (alert)

ServerHello
+early_data (empty)
+key_share

EncryptedExtensions
ServerConfiguration
Certificate
CertificateVerify
Finished

| Finished I

| ApplicationData ApplicationData

Image source: Tim Taybert

3

Remaining issues

0-RTT handshake: replay attacks

e ClientHello messages with early data can be replicated by an
attacker

o If server accepts multiple messages encrypted with the same PSK, a
replay attack is possible

e Typical usage: GET requests
e GET's shouldn’'t change state, but sometimes they do
e New type of application bug

e Imperfect mitigations: timestamping, storing recent ClientHello's

33

Quantum computers

e Shor's quantum algorithm: breaks RSA, Diffie-Hellman, ECC
e l.e. all asymmetric cryptography employed by TLS

e Solution: post-quantum cryptography

e Experimental cipher suites
e NIST's PQC competition: currently in round 1; standards expected
around 2022-2024

34

The global PKI

The global PKI

e Compromise one root CA, MitM the whole web
e Proposed alternatives did not catch on, so far:

o DANE: DNS(SEC)-based trust model
e Convergence: more than one CA vouches for site authenticity
e HPKP: key pinning in the browser

e Certificate Transparency project

e Detection (but no prevention) of wrongly issued certificates
e Caught Symantec issuing an unauthorized google.com certificate

36

Traffic analysis

Attack tomorrow?

YES NO

al al

=] V4 QX

37

Interoperability problems

Upgrading an omnipresent internet protocol is hard

Servers didn't implement TLS version negotiation correctly

Middleboxes make assumptions based on previous protocol versions

Upgrading is a little easier on the web:

e Most people’s browsers update automatically
e Browser vendors can propel/force protocol adoption and deprecation

e E-mail, on the other hand...

38

Conclusion

e Lessons learned from SSL/TLS vulnerabilities
e TLS 1.3: simpler, faster and safer

e But: the problem of transport security has not been ‘solved’

39

	Introduction to TLS
	Problems and vulnerabilities
	Design of TLS 1.3
	Remaining issues

