## The road to TLS 1.3

Tom Tervoort

- 1. Introduction to TLS
- 2. Problems and vulnerabilities
- 3. Design of TLS 1.3
- 4. Remaining issues

## Introduction to TLS

#### The initial problem



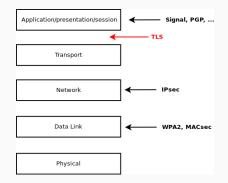
# Welcome to Amazon.com Books!

<u>One million titles,</u> consistently low prices.

(If you explore just one thing, make it our personal notification service. We think it's very cool!)

#### SPOTLIGHT! -- AUGUST 16TH

These are the books we love, offered at Amazon.com low prices. The spotlight moves **EVERY** day so please come offen.


#### **ONE MILLION TITLES**

Search Amazon com's <u>million title catalog</u> by author, subject, title, keyword, and more... Or take a look at the <u>books we recommend</u> in over 20 categories... Check out our <u>customer reviews</u> and the <u>award winners</u> from the Hugo and Nebula to the Pulitzer and Nobel... and <u>bestsellers</u> are 30% off the publishers list...

- Early 90's: advent of the web and e-commerce
- Shopping online involves transmitting credit card numbers
- ... but the internet is an untrusted network

- Cryptographically protect a connection between two parties
- Protect against sniffing, spoofing, tampering, replaying, reordering etc.
- Identification: prove knowledge of a secret key
- Assumption: attacker has full control over the network
  - However, the attacker has no control over the end-points
- How realistic is this?

### TLS/SSL: a secure channel on 'layer $4\frac{1}{2}$ '

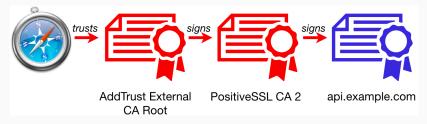


- TLS requires a reliable transport layer protocol; i.e. TCP
- Alternative for (unicast) UDP: DTLS
- Currently in development: TLS for QUIC

- SSL: Secure Sockets Layer
- TLS: Transport Layer Security
- TLS is SSL's successor
- Six versions: SSL 2.0, SSL 3.0, TLS 1.0, TLS 1.1, TLS 1.2, TLS 1.3

#### Three sub-protocols

- Handshake protocol
  - Negotiate protocol version and ciphers
  - Establish session keys (asymmetric cryptography)
  - Authenticate server (and optionally client)
- Record protocol
  - Encrypted/authenticated communications
  - Replay/reorder protection
- Alert protocol
  - Notifications and errors
  - Plaintext or encrypted


#### The TLS 1.2 handshake



- How does Alice know she's talking to Bob?
- Step 1: verify that Bob owns a private key matching a certain public key
  - Digitally sign part of handshake (including Alice's nonce)
  - Incorporate in key exchange protocol, then verify Alice and Bob share the same keys

- How does Alice know about Bob's public key?
- Step 2: Bob presents a certificate, which contains:
  - His public key
  - Information about his identity (e.g. domain name, e-mail address)
  - Information about certificate validity (e.g. expiration date)
  - A signature by a certificate authority (CA)
- The CA vouches that the certificate information is accurate
  - Bob has proved the key-identity link to the CA

#### Authentication within TLS



- How does Alice know she can trust the CA?
- Step 3: Bob sends the CA's certificate chain:
  - Intermediate certificate: validate and move up
  - Root certificate: should be in Alice's trust store

- Opportunistic encryption: trust everything
  - No protection against man-in-the-middle attacks
- Simple approach: store single certificate in the application
- Corporate Public Key Infrastructure (PKI)
  - Admin distributes company trust store
- Browsers: worldwide PKI
  - Browsers trust about 100 CA's to each authenticate the entire internet

## **Problems and vulnerabilities**

- Never released
- Initially did not authenticate packets, and had no replay protection
- Later: authentication with CRC checksums, easy to break

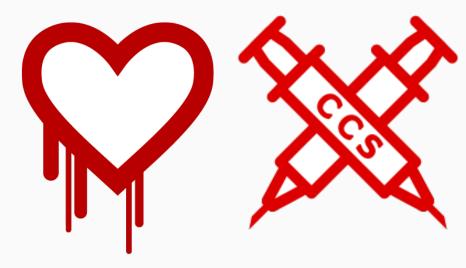
- Released by Netscape in 1995
- Handshake messages not protected
  - Man-in-the-middle can force both parties to use weaker cryptography
- The redesigned SSL 3.0 was released one year later

- Open question during SSL design: encrypt-then-authenticate, or the other way around?
- Chose authenticate-then-encrypt
- When decryption fails: decryption\_failed error
- When decryption succeeds but integrity check fails: bad\_record\_mac error
- Vaudenay in 2002: type of error reveals information about plaintext
- Attacker can exploit this to completely decrypt communications

- TLS 1.0 did not implement CBC encryption 'by the book'
- Bard in 2006: published "a challenging but feasible" attack
- Did not seem exploitable in HTTPS
- Duong and Rizzo in 2011: BEAST attack
- Stole cookies with a Java applet
- Lot of publicity
- TLS vulnerabilities became a popular research subject

- By design: TLS does not hide message length
- Useful feature: TLS compression
- How well a message compresses reveals information about its content
- Theoretical vulnerability: compression-oracle attack
- BEAST researchers in 2012: not-so-theoretical attack against HTTPS
- Attackers can steal cookies

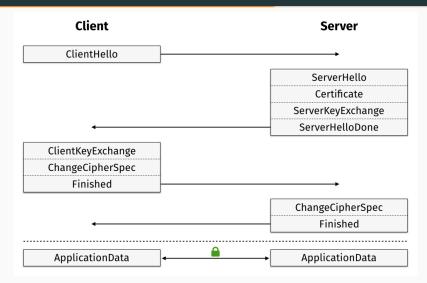
- Until 1996: U.S. export controls on cryptography
- Maximum key size for exported products: 40 bits
  - Breakable by U.S. government in the 90's
  - And now, by anyone else
- Netscape: "U.S. edition" and "International edition"
  - Only 40-bit ciphers in international edition
  - American servers: can support both strong and export crypto
  - Important reason for cipher negotiation mechanism
- Export cryptography stuck around for compatibility reasons


- Intention: client and server pick strongest mutually supported protocol and cipher
- In practice: attacker could intervene
- POODLE attack: downgrade to SSL 3.0, enabling padding oracle attack
- DROWN, FREAK and LOGJAM: exploit export crypto to achieve man-in-the-middle attack
  - DROWN and LOGJAM work even if the client does not support export ciphers

#### Weak cryptography: "it's only theoretical"

- Five original options for symmetric encryption
- DES
  - Diffie and Hellman in 1977: DES cipher is insecure
  - 1997 DESCHALL Project: publicly cracked; complete key recovery
- RC4
  - Roos in 1995: statistical biases in keystream
  - Vanhoef and Piessens in 2015: decrypt an HTTP cookie in 75 hours
- 3DES, IDEA, RC2
  - As used in TLS: not suitable for encrypting large amounts of data
  - Bhargavan and Leurent in 2016: HTTP cookie decrypted in two days (Sweet32)

- Bleichenbacher in 1998: attack on RSA encryption with PKCS#1 padding
- Still used by TLS 1.2, with special mitigations
- ROBOT attack in 2017: mitigations insufficient


### More complexity, more bugs



#### More complexity, more bugs

```
static OSStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,
                                uint8 t *signature, UInt16 signatureLen)
   OSStatus
                    err;
                   hashOut, hashCtx, clientRandom, serverRandom;
   SSLBuffer
                    hashes[SSL SHA1 DIGEST LEN + SSL MD5 DIGEST LEN];
   uint8 t
   SSLBuffer
                    signedHashes;
   uint8 t
                    *dataToSign;
    size t
                   dataToSignLen;
   if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)
       goto ↓fail;
   if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
       goto ↓fail;
   if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
       goto ↓fail;
   if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
       goto vfail;
       goto ↓fail;
   if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
       goto ↓fail;
   err = sslRawVerify(ctx,
                       ctx->peerPubKev.
                       dataToSign,
                                               /* plaintext */
                       dataToSignLen.
                                              /* plaintext length */
                       signature.
                       signatureLen);
   if(err) {
       sslErrorLog("SSLDecodeSignedServerKeyExchange: sslRawVerify "
                    "returned %d\n", (int)err);
       goto ↓fail:
```

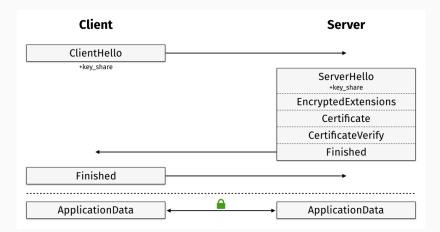
#### Security vs. performance



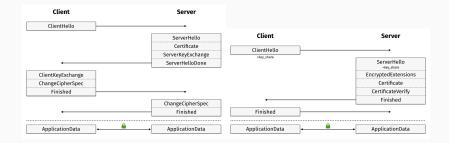
- Full key exchange: 1.5/2 round trips (not counting TCP handshake)
- 1-RTT shortcuts possible, but sacrifice forward secrecy

# Design of TLS 1.3

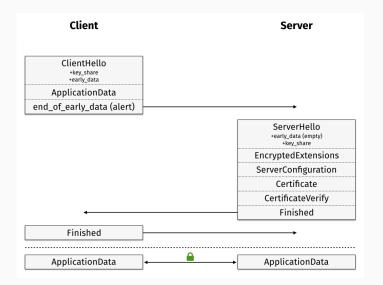
- Remove (potentially dangerous) legacy features
- Simplify the protocol
- Encrypt more
- Reduce handshake round-trips


- Unnecessary/dangerous features to be scrapped:
  - Key exchange methods without forward secrecy
  - Renegotiation mechanism
  - Custom Diffie-Hellman parameters
  - Compression

#### Less is more: ciphers


| TLS DH annon EXPORT WITH DES40 CRC SHA<br>TLS DH annon EXPORT WITH DES40 CRC SHA<br>TLS DH annon WITH ABS EDE CRC SHA<br>TLS DH annon WITH ABS 128 CRC SHA250<br>TLS DH annon WITH ABS 128 CRC SHA250<br>TLS DH annon WITH ABS 236 CRC SHA<br>TLS DH annon WITH CRC 236 CRC SHA<br>TLS DH ANN WITH CRC 236 CRC SHA<br>TLS DH ANN WITH CRC 236 CRC SHA<br>TLS DH ANN WITH CRC 236 CRC SHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TLS DHE D5S WITH CARELLA 256 CBC SHA<br>TLS DHE D5S WITH CARELA 254<br>TLS DHE SHA WITH CARELA 254<br>TLS DHE RAA WITH A52 TAR CARE SHA<br>TLS DHE RAA WITH CARELLA 726 CBC SHA<br>TLS DHE RAA WITH CARELLA 726 CBC SHA<br>TLS DHE RAA WITH CARELLA 726 CBC SHA<br>TLS ECH anon WITH A52 TAR CBC SHA<br>TLS ECH anon WITH A52 TAR CBC SHA<br>TLS ECH anon WITH A52 TAR CBC SHA<br>TLS ECH AND WITH A52 TAR CBC SHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TLS ECONE ECDSA WITH AES 256 CBC SHA<br>TLS ECONE ECDSA WITH AES 256 CBC SHA3B4<br>TLS ECONE ECDSA WITH AES 256 CGC SHA3B4<br>TLS ECONE ECDSA WITH CAMELLTA 128 CBC SHA3D3<br>TLS ECONE ECDSA WITH CAMELLTA 128 CBC SHA3D<br>TLS ECONE ECDSA WITH ACL 128 SHA<br>TLS ECONE ECDSA WITH ACL 128 SHA<br>TLS ECONE ECDSA WITH ACL 128 SHA<br>TLS ECONE ECDSA WITH ACL 128 CBC SHA<br>TLS ECONE RCSA WITH ACS 128 CBC SHA3D5<br>TLS ECONE RCSA WITH ACS 250 CBC SHA3D5 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TLS_DH_RSA_WITH_JES_GDC_GSL_SHA<br>TLS_DH_RSA_WITH_JES_EDC_GBC_SHA<br>TLS_DH_RSA_WITH_AES_128_GBC_SHA<br>TLS_DH_RSA_WITH_AES_128_GBC_SHA256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TLS DIE RSA WITH GES CBC SHA<br>TLS DIE RSA WITH SEC CBC SHA<br>TLS ECCH anon MITH SES LBC CBC SHA<br>TLS ECCH anon MITH ASS JBC GEC SHA<br>TLS ECCH anon MITH ASS JBC GEC SHA<br>TLS ECCH anon WITH KALL SHA<br>TLS ECCH anon WITH KALL SHA<br>TLS ECCH CBCA MITH ASS JBC CBC SHA<br>TLS ECCH ECGS ANTH A | TLS_RSA_EXPORID24_MITH_CES_CBL_SHA<br>TLS_RSA_EXPORID24_WITH_C4_56_SHA<br>TLS_RSA_EXPORT_WITH_DES40_CBC_SHA<br>TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TLS DHE DSS EXPORTID24 WITH DES CRC SHA<br>TLS DHE DSS EXPORTID24 WITH DES CRC SHA<br>TLS DHE DSS EXPORT WITH DES40E CRC SHA<br>TLS DHE DSS WITH JBSS EDE CRC SHA<br>TLS DHE DSS WITH AES 120 CRC SHA<br>TLS DHE DSS WITH AES 20 CRC SHA<br>T | ILS ELCUR FAA WITH AES 230 CRL SHABBA<br>TLS ECUR FAA WITH AES 230 CRL SHABBA<br>TLS ECUR FAA WITH CAMELLIA 128 CRC SHA256<br>TLS ECUR FAA WITH CAMELLIA 226 CRC SHABBA<br>TLS ECUR FAA WITH AMELL SHA<br>TLS ECUR ECOR WITH AMEL SHA<br>TLS ECUR ECORA WITH AES TAB CRC SHA<br>TLS ECURE ECORA WITH AES TAB CRC SHA<br>TLS ECURE ECORA WITH AES TAB CRC SHA<br>TLS ECURE ECORA WITH AES TAB CRC SHA256<br>TLS_ECURE ECORA WITH AES TAB CRC SHA256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

TLS\_AES\_128\_GCM\_SHA256 TLS\_AES\_256\_GCM\_SHA384 TLS\_CHACHA20\_POLY1305\_SHA256 TLS\_AES\_128\_CCM\_SHA256 TLS\_AES\_128\_CCM\_8\_SHA256


- All handshake messages after ServerHello are encrypted
- This includes extension info and server/client certificates



#### Handshake comparison



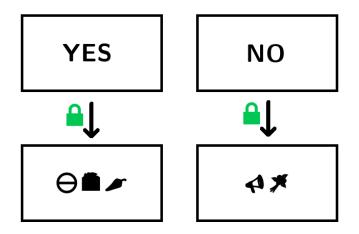
#### 0-RTT handshake



# **Remaining issues**

#### 0-RTT handshake: replay attacks

- ClientHello messages with *early data* can be replicated by an attacker
- If server accepts multiple messages encrypted with the same PSK, a replay attack is possible
- Typical usage: GET requests
- GET's shouldn't change state, but sometimes they do
  - New type of application bug
- Imperfect mitigations: timestamping, storing recent ClientHello's


- Shor's quantum algorithm: breaks RSA, Diffie-Hellman, ECC
- I.e. all asymmetric cryptography employed by TLS
- Solution: post-quantum cryptography
  - Experimental cipher suites
  - NIST's PQC competition: currently in round 1; standards expected around 2022-2024

#### The global PKI



- Compromise one root CA, MitM the whole web
- Proposed alternatives did not catch on, so far:
  - DANE: DNS(SEC)-based trust model
  - Convergence: more than one CA vouches for site authenticity
  - HPKP: key pinning in the browser
- Certificate Transparency project
  - Detection (but no prevention) of wrongly issued certificates
  - Caught Symantec issuing an unauthorized google.com certificate

# Attack tomorrow?



- Upgrading an omnipresent internet protocol is hard
- Servers didn't implement TLS version negotiation correctly
- Middleboxes make assumptions based on previous protocol versions
- Upgrading is a little easier on the web:
  - Most people's browsers update automatically
  - Browser vendors can propel/force protocol adoption and deprecation
- E-mail, on the other hand...

- Lessons learned from SSL/TLS vulnerabilities
- TLS 1.3: simpler, faster and safer
- But: the problem of transport security has not been 'solved'