e ” ”] - ’
i Y N2 F P |]
. A J -~ o B - o — ~ 4
' ’ /) =
v J :
X ’ - iy
o
A 4
|
X
.

i i i v 5 S Stl........‘.
i T
R LT AN o
% . oL | — % X

\ I S

wn
@)
m
_I
o
LLI
m
o
LL|
L
<
a
o
L
L
D
O
O
Z
<
_l
L
o
O
>
<
N
<
o
T
LLd
>
<
AV
O
R
m
®
~
wn
<
o
O
Z
LLd
m

VRIJE UNIVERSITEIT AMSTERDAM

NLUUG 2018

TEASE

* We would like to protect
against cache attacks
generically

* You won't believe this one
thing that people forget

OVERVIEW

Side channels
Cache attacks

TLBleed

Evaluation

CACHE SIDE CHANNELS

LN L ol

| |
¥

o

.
:

\;.l

N
L

ZZ

SRR

DE CHANNELS

* Leak secrets outside the regular intertace

* The first combination safes in the 1950s

- XAMPLE: FLUSH+RELOAD

Can attack AES implementation with T tables
A table lookup happens T; [xi = pi ® ki]
p;is a plaintext byte, k; a key byte

We can detect lookups into the table using F+R

EXAMPLE: FLUSH+RELOAD

Again: secrets are betrayed by memory accesses

Known plaintext + accesses = key recovery

Plaintext byte
o 40 80 co £8

1000

800

600

400

200

1000

800

600

400

200

EXAMPLE: LIBGCRYPT ECC

10000

20000 30000

40000

10000

20000 30000

40000

EXAMPLE: LIBGCRYPT ETC

oro - cociira lem Lo avioriag
500 T mivrc oot urs \.IJU VI wVyY A" A A (=1} T T

400 |

300 + :

200 | .

100+ .

0 10000 20000 30000 40000

500 [T T T T]

400 | |

300 + .

200 | .

100+ .

0 10000 20000 30000 40000

DEFENCE EXAMPLE: TSX

Intel TSX: Transactional Synchronization Extensions

Intended for hardware transactional memory
But relies on unshared cache activity
Transactions fit in cache, otherwise auto-abort

We can use this as a defence - all solved now right?

Plaintext byte Plaintext byte

00 40 80 cO £8 00 40 80 cO £8
0 0 X

4

»
.

8

O
A=
O
=8
O
<
O

S —
b N

TLBLEED

L\

AN

:
,\Ll

e

TLBLEED: TLB AS SHAR

D STAT

Other structures than cache shared between threads?

What about the TLB?

Documented: TLB has L1iTLB, L1dTLB, and L2TLB

Not documented: structure

TLBLEED: TLB AS SHAR

Let’s experiment with performance counters

Try linear structure first
All combinations of ways (set size) and sets (stride)
Smallest number of ways is it

Smallest corresponding stride is number of sets

D STAT

TLBL

-D: TLB AS SHAR

For LZTLB:
We reverse engineered a more complex hash function

D STAT

Skylake XORs 14 bits, Broadwell XORs 16 bits

Represented by this matrix, using modulo 2 arithmetic

TLBL

-D: TLB AS SHAR

Let's experiment with performance counters

Now we know the structure..
Are TLB's shared between hyperthreads?

D STAT

Let's experiment with misses when accessing the same set

L1 itlb

8 12 16
TLB set TLB set

32 04 96
TLB set

TLBLEED: TLB AS SHAR

D STAT

L1 dTLB L11TLB
Name year pn hsh pn hsh

Sandybridge
Ivybridge
Haswell
HaswellXeon
Skylake
BroadwellXeon
Coffeelake

g

12 212.0 XOR-7
6 2724 XOR-8
12 2303 XOR-7

IR NI N N N N
'\'\'\'\'\'\\
'\'\'\'\'\'\'\

TLBLEED: TLB AS SHAR

Can we use only latency?

D STAT

Map many virtual addresses to same physical page

L1 dTLB hit
L2 TLB hit
L2 TLB miss

>
O
c
Q
-
o
Q
—
(1

130 140 150 160
CPU cycles

170

180

TLBLEED: TLB AS SHAR

Let’s observe EADSA ECC key multiplication

D STAT

Scalar is secret and ADD only happens if there's a

Like RSA square-and-multiply

But: we can not use code information! Only data..!

void _gcry_mpi_ec_mul_point (mpi_point_t result,

gery_mpi_t scalar, mpi_point_t point,

mpi_ec_t ctx)

{

for (j=nbits-1; j >= 0; j--) {

_gcry_mpi_ec_dup_point (result, result, ctx);

if (mpi_test_bit (scalar, j))

_gcry_mpi_ec_add_points(result,result,point,ctx);

}
L

TLBLEED: TLB AS SHARED STATE

TLBLE

-D: TLB AS SHARE

D STAT

Monitor a single TLB set and use temporal information

Use machine learning (SVM classifier) to tell the difterence

latency

A 71* AR A LM A

AR

TLBLEED: TLB AS SHARED STATE

Mo

Support
vectors

!-—-

| I
‘)

Lo e
-mmm ik o
- . — de . _.w__-’“;'\ ~—< .$
w- 34 |

v -— o

B s T
| i

L Te— | 3
i Bliideme diEmremm s @
Soe e — :

-
-

I.im.lll-

IR ==
n.lll"-i

-

|

..... e =D

EVALUATION

TLBL

Microarchitecture

Skylake
Broadwell
Coffeelake
Total

=D,

RELIABILITY:

Median BF

21.6
23.0

22.6

Success
0.998
0.982
0.998
0.993

Single trace capture: Tms

Median end-to-end time: 17/s

Microarchitecture
Broadwell (CAT)

Broadwell

>
o)
=
)
-]
(on
Q
—
(18

Trials
500
500

Success
0.960
0.982

-CC

15 20
log, brute force attempts

Median BF
22.6

23.0

B broadwell
B kabylake
I skylake

TLBLE

-D R

ELIABILITY: RSA

1024-bit RSA square-and-multiply in libgcrypt

Old version

F+R hardened: conditional pointer swap

40 60
edit distance

-CEPTION
Intel: dismissed TLBleed

OpenBSD disabled Intel HT

Widespread media coverage, logo
thanks to TheRegister

Wikipedia

CVS: cvs.openbsd.org: src

Mark Kettenis Tue, 19 Jun 2018 12:30:19 -0700

CVSROOT: /cvs
Module name: src
Changes by: kette...@cvs.openbsd.org 2018/06/19 13:29:52

Modified files:
sys/arch/amd64/amd64: cpu.c
sys/arch/amd64/include: cpu.h
sys/kern : kern_sched.c kern_sysctl.c
sys/sys : sched.h sysctl.h

Log message:
SMT (Simultanious Multi Threading) implementations typically share

TLBs and L1 caches between threads. This can make cache timing
attacks a lot easier and we strongly suspect that this will make

TLBleed

From Wikipedia, the free encyclopedia

TLBleed is a cryptographic side-channel attack that uses machine lea
simultaneous multithreading.['112] As of June 2018, the attack has only
vulnerable to a variant of the attack, but no proof of concept has been

The attack led to the OpenBSD project disabling simultaneous multith
theoretically be prevented by preventing tasks with different security cq

References |[edit]

1. A Williams, Chris (2018-06-22). "Meet TLBleed: A crypto-key-leaking C
2. Aabcygrghese, Sam (25 June 2018). "OpenBSD chief de Raadt says

CREDIT

* Work also by Kaveh Razavi,
Cristiano Giuffrida, Herbert
Bos

* Some diagrams in these
slides were taken from
other work:

FLUSH+RELOAD, Cloak

* Yuval Yarom, Katrina
Falkner, Peter Pel3l, Daniel
Gruss

CONCLUSION

* Practical, reliable, high
resolution side channels
exist outside the cache

* They bypass defenses

* @hjg @kavehrazavi
* @vudec

» vusec.net/projects/tlbleed/

* Thank you for listening

https://www.vusec.net/projects/tlbleed/

