
Open Source monitoring using Prometheus

Ed Schouten <ed@kumina.nl>

Ed Schouten <ed@kumina.nl>

● 2003-*: User/developer of Open Source Software.
○ 2008-*: developer at FreeBSD and LLVM.
○ 2015-*: author of CloudABI: easy sandboxing for UNIX.

● 2011-2012: Part-time employed by Kumina while studying.
● 2012-2014: Employed by Google.

○ Software Engineer/Site Reliability Engineer in Munich.
● 2016-*: Full-time employed by Kumina.

About the speaker

● What is Prometheus?
● How does Prometheus work?
● How can you store data in Prometheus?
● How can you extract data from Prometheus?
● How does Prometheus do alerting?
● (How does Kumina use Prometheus?)

Today’s set of questions

● ~2003: Google develops Borg: a cluster manager.
○ Existing monitoring systems don’t seem to work well with it.

■ Bad support for creating/removes targets to monitor dynamically.
■ Too much focussed on per-target state, as opposed to global state.

○ Google also develops Borgmon: Borg monitoring system.
● 2012: Ex-Googlers at SoundCloud miss Borgmon.

○ Prometheus: a reimplementation of Borgmon.
○ Open Source: Apache 2.0 licensed.
○ Somewhat cleaner than Borgmon.

● (2014: Google creates an Open Source Borg, Kubernetes)

The history of Prometheus

● Prometheus is broadly applicable.
○ No Nagios-style networks/hosts/services hierarchy.
○ Not intended to keep track of just servers.

■ The temperature of rooms in a house.
■ The number of people walking into a shop.
■ Stock prices and currency exchange rates.

● Prometheus is versatile.
○ Nagios can only do trigger-based alerting.
○ Munin can only do graphing of metrics.
○ Prometheus can use the same dataset to do both.
○ Graphs and alerts can be designed freely on top of the dataset.

An overview of Prometheus

Prometheus’ data model

● Prometheus is a 2D database.
○ Horizontal axis: time.

■ Has a configurable finite retention period.
○ Vertical axis: unique identifier for every metric.

■ Identifier: a dictionary of string keys and string values.
{__name__=“http_requests_total”,job=“nginx”,instance=“kumina.nl”}

■ The value of __name__ can be placed before the {}.
http_requests_total{job=“nginx”,instance=“kumina.nl”}

○ In the cells: 64-bits IEEE floating-point values.
○ On-disk format: every metric stored in its own compressed file.
○ PromQL: query/computation language for Prometheus.

Primitive data types

● Gauges (Dutch: ‘meters’):
○ Examples: memory usage, temperature, exchange rate.
○ Can both increase and decrease over time.

● Counters (Dutch: ‘tellers’):
○ Examples: number of requests, customers entering a shop.
○ Can only increase.
○ Decrease indicates a reboot, restart or counter overflow.

http_requests_total{instance="…",job="…",vhost="…",code="2xx"} 12308
http_requests_total{instance="…",job="…",vhost="…",code="3xx"} 5739
http_requests_total{instance="…",job="…",vhost="…",code="4xx"} 141
http_requests_total{instance="…",job="…",vhost="…",code="5xx"} 4

Examples of counters

Complex data types

● Histograms:
○ A counter for which you want to track a per-event sample.
○ Example: number of HTTP requests and their latency.
○ Constructed by combining multiple primitive metrics:

■ …_count: total number of samples.
■ …_sum: total sum of all samples.
■ …_bucket{le=“X”}: number of samples ≤ X.

● Summaries:
○ Similar purpose, but buckets are based on quantiles.
○ For every quantile, it exports the bucket’s boundary.
○ Not used as frequently. Will not be discussed any further.

postfix_queue_message_size_bytes_count{instance="…",job="…"} 613
postfix_queue_message_size_bytes_sum{instance="…",job="…"} 49681355
postfix_queue_message_size_bytes_bucket{instance="…",job="…",le="1000"} 0
postfix_queue_message_size_bytes_bucket{instance="…",job="…",le="10000"} 1
postfix_queue_message_size_bytes_bucket{instance="…",job="…",le="100000"} 419
postfix_queue_message_size_bytes_bucket{instance="…",job="…",le="1e+06"} 613
postfix_queue_message_size_bytes_bucket{instance="…",job="…",le="1e+07"} 613
postfix_queue_message_size_bytes_bucket{instance="…",job="…",le="1e+08"} 613
postfix_queue_message_size_bytes_bucket{instance="…",job="…",le="1e+09"} 613
postfix_queue_message_size_bytes_bucket{instance="…",job="…",le="+Inf"} 613

613 emails with a combined size of 49,7 MB.
All emails are 1000 < x ≤ 1000000 bytes in size.

Example of a histogram

● Values are floating-point, so just use base units.
○ Seconds, but not milliseconds.
○ Bytes, but not kilobytes or kibibytes.

● Add the unit as a suffix: _seconds, _bytes.
● Add a _total suffix after counters.
● Everything with one __name__ should be aggregatable.

○ This doesn’t make sense, as you can’t add these values together:
http_requests{type=“count”} 12
http_requests{type=“response_size”} 158237
http_requests{type=“duration”} 8.3843

Best practices for designing metrics

Database:
http_cache_usage_bytes{instance="web1.kumina.nl"} 235572486
http_cache_usage_bytes{instance="web2.kumina.nl"} 348453122
http_requests_total{instance="web1.kumina.nl"} 47584
http_requests_total{instance="web2.kumina.nl"} 57237

Query:
http_cache_usage_bytes

Output:
http_cache_usage_bytes{instance="web1.kumina.nl"} 235572486
http_cache_usage_bytes{instance="web2.kumina.nl"} 348453122

Examples of PromQL

Database:
http_cache_usage_bytes{instance="web1.kumina.nl"} 235572486
http_cache_usage_bytes{instance="web2.kumina.nl"} 348453122
http_requests_total{instance="web1.kumina.nl"} 47584
http_requests_total{instance="web2.kumina.nl"} 57237

Query:
http_cache_usage_bytes > 300000000

Output:
http_cache_usage_bytes{instance="web2.kumina.nl"} 348453122

Examples of PromQL

Database:
http_cache_usage_bytes{instance="web1.kumina.nl"} 235572486
http_cache_usage_bytes{instance="web2.kumina.nl"} 348453122
http_requests_total{instance="web1.kumina.nl"} 47584
http_requests_total{instance="web2.kumina.nl"} 57237

Query:
http_cache_usage_bytes > bool 300000000

Output:
{instance="web1.kumina.nl"} 0
{instance="web2.kumina.nl"} 1

Examples of PromQL

Database:
http_cache_usage_bytes{instance="web1.kumina.nl",dc="AMS"} 47584
http_cache_usage_bytes{instance="web2.kumina.nl",dc="AMS"} 57237
http_cache_usage_bytes{instance="web3.kumina.nl",dc="FRA"} 540489
http_cache_usage_bytes{instance="web4.kumina.nl",dc="FRA"} 907948

Query:
sum(http_cache_usage_bytes)

Output:
{} 1553258

Examples of PromQL

Database:
http_cache_usage_bytes{instance="web1.kumina.nl",dc="AMS"} 47584
http_cache_usage_bytes{instance="web2.kumina.nl",dc="AMS"} 57237
http_cache_usage_bytes{instance="web3.kumina.nl",dc="FRA"} 540489
http_cache_usage_bytes{instance="web4.kumina.nl",dc="FRA"} 907948

Query:
sum(http_cache_usage_bytes) by (dc)

Output:
{dc="AMS"} 104821
{dc="FRA"} 1448437

Examples of PromQL

Query:
http_requests_total[5m]

Output:
http_requests_total{instance="web1.kumina.nl"} 45526411 @1487684536.022
 45526731 @1487684596.022
 45527043 @1487684656.022
 45527351 @1487684716.022
 45527661 @1487684776.022

Examples of PromQL

Database:
http_requests_total{instance="web1.kumina.nl"} 45526411 @1487684536.022
 …
 45527661 @1487684776.022

Query:
rate(http_requests_total[5m])

Output:
{instance="web1.kumina.nl"} 5.208333333

Computation (simplified):
(45527661 - 45526411) / (1487684776.022 - 1487684536.022) = 5.208333333

Examples of PromQL

● Prometheus is fast, but not supernaturally fast.
○ It’s fine to run complex queries for ad hoc data exploration.
○ Don’t build auto-refreshing dashboards with complex queries!

● Solution: add recording rules.
○ Lets Prometheus compute results as it’s scraping them.
○ Binds the results of an expression to a new named metric.
○ Dashboards should grab values from the new metric.

● Syntax:
name = expression
instance:http_requests:rate5m =
 sum(rate(http_requests_total[5m])) by (instance)

Recording rules

Database:
memory_free_bytes{instance="web3.kumina.nl"} 5046272
memory_installed_bytes{instance="web3.kumina.nl"} 2147483648

Alert rule:
ALERT MemoryUsageTooHigh
IF memory_free_bytes / memory_installed_bytes < 0.1
FOR 15m
LABELS { severity = “sms” }
ANNOTATIONS {
 problem = “Free memory on {{ $labels.instance }} is low.”,
 solution = “SSH to {{ $labels.instance }} and kill Java VMs.”,
}

Generating alerts

Sending alerts

● Prometheus tries to keep things simple.
○ No proliferation of IRC, email, Slack plugins.
○ No support for acknowledgements, silences, pager rotations.
○ Prometheus just treats alerts as simple booleans.

● Alert Manager is where Prometheus keeps the smartness.
○ Receives alerts from Prometheus through HTTP POST requests.
○ Keeps track of silences: patterns on labels to suppress alerts.
○ Has logic for coalescing similar alerts.
○ Has plugins for contacting IRC, email, Slack, PagerDuty, etc.
○ Alert messages link back to the right Prometheus instance.

● Prometheus tries to keep things simple.
○ Always pull based; not push based.
○ Prometheus supports just one protocol: HTTP GET requests.
○ Can scrape targets at configured intervals.
○ Interval is increased if Prometheus is overloaded (‘rushed mode’).

● ‘Client libraries’ available for Go, Python, Java, etc.
○ Allows you to add your own metrics to your software.
○ Adds a tiny HTTP server that exports current metric values.
○ Metrics can be declared as objects in your packages/classes.

Getting data into Prometheus

Example of code annotations in Go

latency := prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "http_request_latency_seconds",
Help: "Latency of HTTP requests in seconds.",
Buckets: []float64{0.1, 0.25, 0.50, 1, 2.5, 5, 10},

})

…

latency.Observe(0.0038);
latency.Observe(1.7453);
latency.Observe(0.0057);

● Most programs don’t use the Prometheus client library yet.
● Solution: exporters.

○ Prometheus sends a HTTP GET request to the exporter.
○ Exporter fetches and parses metrics from its target.
○ Exporter returns metrics in Prometheus’ native format.

● Many exporters readily available:
○ ICMP/TCP/UDP health checks: blackbox_exporter.
○ Linux/BSD OS-level stats: node_exporter.
○ MySQL stats: mysqld_exporter.
○ Java JMX stats (Tomcat, Cassandra, etc.): jmx_exporter.

Exporters

Available at https://github.com/kumina:

● postfix_exporter: Postfix mail server.
● dovecot_exporter: Dovecot POP3/IMAP server.
● libvirt_exporter: KVM based virtual machines.
● unbound_exporter: Unbound DNS server.
● openvpn_exporter: OpenVPN client and server.
● promacct: libpcap-based network traffic accounting.
● birdwatcher: BGP route statistics for BIRD/Calico.

Additionally written by Kumina:

● DRBD and NFS collectors for the official node_exporter.

Metrics exporters developed by Kumina

https://github.com/kumina

Federation

● Prometheus can export its data in its own format.
○ Federation: cooperating Prometheus instances.
○ /federate?match[]=http_requests_total

● Local Prometheus instances:
○ Scrape processes within a single data center.
○ Can give per-process graphs.
○ Have recording rules for computing per-datacenter stats.

● Global Prometheus instances:
○ Scrape values from recording rules from local instances.
○ Can give per-datacenter graphs.

● Official Prometheus site: http://prometheus.io/
● Prometheus on Twitter: https://twitter.com/PrometheusIO
● Grafana: https://grafana.com/
● Kumina’s blog: https://blog.kumina.nl/
● Kumina’s GitHub page: https://github.com/kumina

Links

http://prometheus.io/
https://twitter.com/PrometheusIO
https://grafana.com/
https://blog.kumina.nl/
https://github.com/kumina

