9

kumina

SSSSSSSSSSSSSS

Open Source monitoring using Prometheus

Ed Schouten <ed@kumina.nl>

About the speaker

Ed Schouten <ed@kumina.nl>

e 2003-*: User/developer of Open Source Software.

o 2008-*: developer at FreeBSD and LLVM.
o 2015-*: author of CloudABI: easy sandboxing for UNIX.

o 2011-2012: Part-time employed by Kumina while studying.
e 2012-2014: Employed by Google.

o Software Engineer/Site Reliability Engineer in Munich.

e 2016-*: Full-time employed by Kumina.

Today’s set of questions

What is Prometheus?

How does Prometheus work?

How can you store data in Prometheus?
How can you extract data from Prometheus?
How does Prometheus do alerting?

(How does Kumina use Prometheus?)

The history of Prometheus

e ~2003: Google develops Borg: a cluster manager.

o Existing monitoring systems don’t seem to work well with it.
m Bad support for creating/removes targets to monitor dynamically.
m Too much focussed on per-target state, as opposed to global state.

o Google also develops Borgmon: Borg monitoring system.
e 2012: Ex-Googlers at SoundCloud miss Borgmon.

o Prometheus: a reimplementation of Borgmon.

o Open Source: Apache 2.0 licensed.

o Somewhat cleaner than Borgmon.

e (2014: Google creates an Open Source Borg, Kubernetes)

An overview of Prometheus

e Prometheus is broadly applicable.
o No Nagios-style networks/hosts/services hierarchy.

o Not intended to keep track of just servers.
m The temperature of rooms in a house.
m The number of people walking into a shop.
m Stock prices and currency exchange rates.

e Prometheus is versatile.
o Nagios can only do trigger-based alerting.
o Munin can only do graphing of metrics.
o Prometheus can use the same dataset to do both.
o Graphs and alerts can be designed freely on top of the dataset.

Prometheus’ data model

e Prometheus is a 2D database.

o Horizontal axis: time.
m Has a configurable finite retention period.
o Vertical axis: unique identifier for every metric.

m Identifier: a dictionary of string keys and string values.
{__name__=“http_requests_total”,job=“nginx”,instance=“kumina.nl”}

m The value of __name__ can be placed before the {}.
http_requests_total{job=“nginx”,instance=“kumina.nl”}

o In the cells: 64-bits IEEE floating-point values.
o On-disk format: every metric stored in its own compressed file.
o PromQL: query/computation language for Prometheus.

Primitive data types

e (Gauges (Dutch: ‘meters’):
o Examples: memory usage, temperature, exchange rate.
o Can both increase and decrease over time.

e Counters (Dutch: ‘tellers’):

o Examples: number of requests, customers entering a shop.
o Can only increase.
o Decrease indicates a reboot, restart or counter overflow.

Examples of counters

http_requests_total{instance="..
http_requests_total{instance="..
http_requests_total{instance="..
http_requests_total{instance="..

" job="..
" job="..
" job="..
" job="..

",vhost="..
",vhost="...
",vhost="..
",vhost="...

",code="2xx"}
",code="3xx"}
",code="4xx"}
",code="5xx"}

12308
5739
141

Complex data types

e Histograms:
o A counter for which you want to track a per-event sample.
o Example: number of HTTP requests and their latency.
o Constructed by combining multiple primitive metrics:

m .._count: total number of samples.
m .._sum: total sum of all samples.
m .._bucket{le=“X”"”}: number of samples < X.

e Summaries:
o Similar purpose, but buckets are based on quantiles.
o For every quantile, it exports the bucket's boundary.
o Not used as frequently. Will not be discussed any further.

Example of a histogram

postfix_queue_message_size_bytes_count{instance="..",job=".."}
postfix_queue_message_size_bytes_sum{instance="..",job=".."}
postfix_queue_message_size_bytes_bucket{instance="..",job="..",1e="1000"}
postfix_queue_message_size_bytes_bucket{instance="..",job="..",1e="10000"}
postfix_queue_message_size_bytes_bucket{instance="..",job="..",1e="100000"}
postfix_queue_message_size_bytes_bucket{instance="..",job="..",1le="1e+06"}
postfix_queue_message_size_bytes_bucket{instance="..",job="..",1le="1e+07"}
postfix_queue_message_size_bytes_bucket{instance="..",job="..",1le="1e+08"}
postfix_queue_message_size_bytes_bucket{instance="..",job="..",1le="1e+09"}
postfix_queue_message_size_bytes_bucket{instance="..",job="..",1le="+Inf"}

613 emails with a combined size of 49,7 MB.
All emails are 1000 < x < 1000000 bytes In size.

613
49681355
0

1

419

613

613

613

613

613

Best practices for designing metrics

e Values are floating-point, so just use base units.
o Seconds, but not milliseconds.
o Bytes, but not kilobytes or kibibytes.

e Add the unit as a suffix: _seconds, _bytes.

e Adda total suffix after counters.

e Everything with one __name__ should be aggregatable.

o This doesn’t make sense, as you can’t add these values together:
http_requests{type=“count”} 12
http_requests{type=“response_size”} 158237
http_requests{type=“duration”} 8.3843

Examples of PromQL

Database:

http_cache_usage_bytes{instance="webl.kumina.nl"}
http_cache_usage_bytes{instance="web2.kumina.nl"}
http_requests_total{instance="webl.kumina.nl"}
http_requests_total{instance="web2.kumina.nl"}

Query:

http_cache_usage_bytes

Output:

http_cache_usage_bytes{instance="webl.kumina.nl"}
http_cache_usage_bytes{instance="web2.kumina.nl"}

235572486
348453122
47584
57237

235572486
348453122

Examples of PromQL

Database:

http_cache_usage_bytes{instance="webl.kumina.nl"} 235572486
http_cache_usage_bytes{instance="web2.kumina.nl"} 348453122

http_requests_total{instance="webl.kumina.nl"} 47584
http_requests_total{instance="web2.kumina.nl"} 57237
Query:

http_cache_usage_bytes > 300000000

Output:

http_cache_usage_bytes{instance="web2.kumina.nl"} 348453122

Examples of PromQL

Database:

http_cache_usage_bytes{instance="webl.kumina.nl"}
http_cache_usage_bytes{instance="web2.kumina.nl"}
http_requests_total{instance="webl.kumina.nl"}
http_requests_total{instance="web2.kumina.nl"}

Query:

http_cache_usage_bytes > bool 300000000

Output:

{instance="webl.kumina.nl"}
{instance="web2.kumina.nl"}

235572486
348453122
47584
57237

Examples of PromQL

Database:

http_cache_usage_bytes{instance="webl.kumina.
http_cache_usage_bytes{instance="web2.kumina.
http_cache_usage_bytes{instance="web3.kumina.
http_cache_usage_bytes{instance="web4.kumina.

Query:

sum(http_cache_usage_bytes)

Output:
{}

nl",dc="AMS"}
nl",dc="AMS"}
nl",dc="FRA"}
nl",dc="FRA"}

47584
57237
540489
907948

1553258

Examples of PromQL

Database:

http_cache_usage_bytes{instance="webl.kumina.
http_cache_usage_bytes{instance="web2.kumina.
http_cache_usage_bytes{instance="web3.kumina.
http_cache_usage_bytes{instance="web4.kumina.

Query:

sum(http_cache_usage_bytes) by (dc)

Output:

{dc="AMS"}
{dc="FRA"}

nl",dc="AMS"}
nl",dc="AMS"}
nl",dc="FRA"}
nl",dc="FRA"}

47584
57237
540489
907948

104821
1448437

Examples of PromQL

Query:

http_requests_total[5m]

Output:

http_requests_total{instance="webl.kumina.nl"} 45526411 @1487684536.022
45526731 @1487684596.022
45527043 @1487684656.022
45527351 @1487684716.022
45527661 @1487684776.022

Examples of PromQL

Database:
http_requests_total{instance="webl.kumina.nl"} 45526411 @1487684536.022

45527661 @1487684776.022

Query:

rate(http_requests_total[5m])

Output:

{instance="webl.kumina.nl"} 5.208333333

Computation (simplified):
(45527661 - 45526411) / (1487684776.022 - 1487684536.022) = 5.208333333

Recording rules

e Prometheus is fast, but not supernaturally fast.

o It's fine to run complex queries for ad hoc data exploration.
o Don’t build auto-refreshing dashboards with complex queries!

Solution: add recording rules.

o Lets Prometheus compute results as it's scraping them.

o Binds the results of an expression to a new named metric.
o Dashboards should grab values from the new metric.

Syntax:

name = expression
instance:http_requests:ratebm =
sum(rate(http_requests_total[5m])) by (instance)

Generating alerts

Database:

memory_free_bytes{instance="web3.kumina.nl"} 5046272
memory_1installed_bytes{instance="web3.kumina.nl"} 2147483648
Alert rule:

ALERT MemoryUsageTooH1igh

IF memory_free_bytes / memory_dinstalled_bytes < 0.1

FOR 15m

LABELS { severity = “sms” }

ANNOTATIONS {
problem = “Free memory on {{ $labels.instance }} is low.”,
solution = “SSH to {{ $labels.instance }} and kill Java VMs.”,

}

Sending alerts

e Prometheus tries to keep things simple.

O

©)

O

No proliferation of IRC, email, Slack plugins.
No support for acknowledgements, silences, pager rotations.
Prometheus just treats alerts as simple booleans.

e Alert Manager is where Prometheus keeps the smartness.

O

O O O O

Receives alerts from Prometheus through HTTP POST requests.
Keeps track of silences: patterns on labels to suppress alerts.
Has logic for coalescing similar alerts.

Has plugins for contacting IRC, email, Slack, PagerDuty, etc.
Alert messages link back to the right Prometheus instance.

Getting data into Prometheus

e Prometheus tries to keep things simple.
o Always pull based; not push based.
o Prometheus supports just one protocol: HTTP GET requests.
o Can scrape targets at configured intervals.
o Interval is increased if Prometheus is overloaded (‘rushed mode’).

e ‘Client libraries’ available for Go, Python, Java, etc.
o Allows you to add your own metrics to your software.

o Adds atiny HTTP server that exports current metric values.
o Metrics can be declared as objects in your packages/classes.

Example of code annotations in Go

latency := prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "http_request_latency_seconds",
Help: "Latency of HTTP requests in seconds.",
Buckets: []float64{0.1, 0.25, 0.50, 1, 2.5, 5, 10},

})

latency.Observe(0.0038);
latency.Observe(1.7453);
latency.Observe(0.0057) ;

e Most programs don't use the Prometheus client library yet.
e Solution: exporters.

O

O

O

Prometheus sends a HTTP GET request to the exporter.
Exporter fetches and parses metrics from its target.
Exporter returns metrics in Prometheus’ native format.

e Many exporters readily available:

O

O
©)
©)

ICMP/TCP/UDP health checks: blackbox_exporter.
Linux/BSD OS-level stats: node_exporter.

MySQL stats: mysqgld_exporter.

Java JMX stats (Tomcat, Cassandra, etc.): jmx_exporter.

Metrics exporters developed by Kumina

Available at https://github.com/kumina:

postfix_exporter: Postfix mail server.
dovecot_exporter: Dovecot POP3/IMAP server.
libvirt_exporter: KVM based virtual machines.
unbound_exporter: Unbound DNS server.
openvpn_exporter: OpenVPN client and server.
promacct: libpcap-based network traffic accounting.
birdwatcher: BGP route statistics for BIRD/Calico.

Additionally written by Kumina:

e DRBD and NFS collectors for the official node_exporter.

https://github.com/kumina

e Prometheus can export its data in its own format.
o Federation: cooperating Prometheus instances.
o [federate?match[]=http_requests_total
e |ocal Prometheus instances:
o Scrape processes within a single data center.
o Can give per-process graphs.
o Have recording rules for computing per-datacenter stats.
e Global Prometheus instances:

o Scrape values from recording rules from local instances.
o Can give per-datacenter graphs.

Official Prometheus site: htip://prometheus.io/
Prometheus on Twitter: https://twitter.com/Prometheus|O
Grafana: https://grafana.com/

Kumina's blog: https://blog.kumina.nl/

Kumina’s GitHub page: https://github.com/kumina

http://prometheus.io/
https://twitter.com/PrometheusIO
https://grafana.com/
https://blog.kumina.nl/
https://github.com/kumina

