
Cross-platform file sharing between Unix

and Windows
Paul Shields

Abstract

The need to integrate Unix and Windows servers is becoming more

imperative as companies deploy Windows NT workstations and
servers into Unix-based server environments. Many companies want

to combine the best of both worlds, having the application availability

of NT and the scalability and security of Unix. There are a number of
ways to integrate the systems, each with their own caveats.

1.0 Introduction

The integration of Unix and Windows is more important everyday as
Windows 95/NT becomes the pervasive desktop solution and Unix

retains its stronghold in the high-end server market. IT organizations

must find ways to integrate the platforms allowing seamless access to
all data from every platform.

Integration is not always as easy as it sounds and a number of
solutions are available. When picking a solution, system

administrators must make a conscientious effort to identify their

business needs and select a system that meets those needs. Selecting
the wrong system will lead down a path of frustration because of the

complexity of implementation or the lack of critical features.

2.0 Client versus Server solutions

There are several ways to integrate UNIX and Windows filesystems.

• PC NFS clients

• Windows NT gateway servers
• Unix-based SMB servers

2.1 PC NFS clients

Recently, Microsoft released Services For Unix (SFU), a package of
tools that enhance Windows ability to coexist with Unix. Most of the

tools are client solutions that provide typical Unix tools like Telnet,

NFS, VI, etc. SFU does not provide a way to share NFS mounts to
other Windows users. Like all PC NFS clients, SFU is a solution for a

single user and administrators must install and configure the software

on every PC.

2.2 Windows NT NFS gateways

Another Windows-based solution is a NFS gateway product. These

products offer an NFS client that runs on an NT server and mounts
NFS share points. The server then shares each mount out to the

Windows world. These packages also provide services and tools for

meshing NIS and Windows domains. While functional and robust,
most of these solutions lack scalability. They either have a limit to the

number of NFS mounts possible or internal performance bottlenecks
that limit the number of simultaneous users.

2.3 Unix server solutions

The reason for the Unix server focus is that in environments with an
established Unix server base, such a solution is more flexible and

easier to administer. The exception might be environments with only a

few (5 - 10) users who need access to Unix filesystems. In such an
environment, the administrative load of managing local PC clients is

low.

The Unix SMB market is developing at a rapid rate. Over the last 12-
18 months, there have been significant upgrades to TotalNet

Advanced Server (TAS) by Syntax, updates to Samba (an open-source

solution), new products from a number of Unix vendors, and a
growing number of appliance servers (NetApp).

In some cases, the maturity of these products is making them a viable

alternative to native Windows NT servers. It is possible with today's
solutions to build an "NT" network without a single Windows NT

server.

There are three classes of UNIX SMB servers, AT&T Services for
UNIX (ASU), Samba/TAS, and Network Attached Storage

(embedded processor hybrid systems).

Several years ago, AT&T negotiated a license for the Windows

networking code for porting to UNIX. They have since sub-licensed

this code to several vendors (DEC, Sun, and Auspex). These systems
offer the advantage of being a direct port of the native Windows NT

networking code and thus work with all the remote administration

tools provided with Windows NT. Administrators can manage these
systems like an NT server.

Samba and TAS are UNIX applications and daemons built using

publicly available information on how SMB works, combined with
packet analysis of the network traffic Windows machines generate

when sharing files. This "reverse-engineering" effort means that these

packages may have slight differences in functionality and behavior
than a native NT server. It also means that standard NT administrative

tools will not work. Both applications provide an extensive Web

interface for administration.

Network Attached Storage (NAS) is the final alternative. The

functionality of these systems varies widely. Devices like the NetApp
use a port of native NT networking code and offer features similar to

the ASU systems. Others use implementation more like TAS or

Samba and rely on Web browser for administration. When selecting a
NAS system, test them thoroughly to ensure they meet all the

specification and requirements of your environment.

3.0 Why select a Unix server for Windows file services?

The most common reasons to select a UNIX server for SMB file

services are:

• Stability
• Scalability

• Performance

3.1 Stability

Unix has a history of development that extends back almost 25 years.

During that time, programmers have spent a significant amount of

time refining and optimizing the core Unix OS. Thousands of
programmers have contributed to the Unix source code base and the

result is a stable product that implements many of the features that
other commercial OS still lack.

Windows is a relatively immature product compared to Unix;
Windows NT 4.0 is only four years old. Over the last few years, NT

has come a long way with the release of multiple service packs,

numerous hot-fixes, and an impressive array of third-party
applications. Each of these has made NT a more viable solution in the

server realm, but stability of the core OS still limit its usefulness in

many mission-critical environments.

The various Unix (Sun, IBM, HP, etc.) vendors offer solutions that

deliver a high-level of reliability and stability. Administrators can

further improve stability with high availability options like clustering,
fault-tolerance, and redundant hardware. Each of these options has

more refinement and is more feature-rich and stable than their NT

equivalents.

Another reason for the stability of Unix is the tight integration

between hardware and software. Since most Unix vendors sell an OS
that runs only on their hardware, they have the ability to tune the

interaction between hardware and software.

The tight integration between hardware and software also allows Unix
platforms to support advanced hardware features such as internal NIC

fail-over, hot-swappable CPUs, hot-swappable expansion cards, and

network trunking.

As Windows matures it may catch and surpass the stability of Unix,

but the early betas of NT 5/Windows 2000 still lack the focus on

stability. At some point Microsoft will realize the importance of
stability and make a concerted effort to improve Windows.

3.2 Scalability

Unix also has an advantage when it comes to system scalability. As
mainframe-based organizations migrated to Unix, they demanded the

same levels of scalability that were previously available on their older

systems. We are starting to see the same demands placed on Windows
NT servers, but the maturity of the OS gives Unix the lead in overall

scalability.

Unix systems scale to support multiple CPUs (up to 64), network
interface cards (dozens of cards per server), huge disk arrays, and

large memory addresses (up to 64 bits) without trouble. Every major

Unix vendor ships a 64-bit version of their OS that runs in tandem
with their 64-bit processors. Windows 2000 promises 64-bit

addressing with support for the Merced chip, but this is months if not

years away.

Microsoft is still struggling to add advanced SMP capabilities to

Windows NT. While 64 CPU systems are common in the UNIX

world, it is rare to find a Windows machine with more than four.
Windows 2000 Data Center will support up to 16 CPUs, but its release

is almost a year away.

Network throughput is a critical measure of a file server. Unix servers
can support multiple Fast Ethernet, GigaBit Ethernet, ATM, and FDDI

connection. With adequate CPU power, the server can fill these

network pipes with massive amounts of data.

Limitations in the current Microsoft TCP/IP stack limit the ability of

the OS to scale to a level of supporting multiple network interfaces.
Driver support is another issue. Every major Unix vendor ships Quad

Fast Ethernet cards for their systems. Such cards are rare in the

Windows realm.

Finally, high-end storage solutions are another area of strength for

Unix. The drivers and OS are more capable of handling the high data

rates of LVD SCSI and Fibre-Channel then their Windows
counterparts. Many of the Unix-based drive arrays offer features not

common in the NT world such as dual-path architectures and better

support for dynamic reconfiguration.

3.3 Performance

In the end, it comes down to system performance. Performance is

more than just raw benchmarks but is the overall impact the server has
on user productivity.

Configuring a Unix server to out-perform an NT server is a trivial task

in most situations for a number of reasons. The large memory address
space and efficiency of the OS allow Unix systems to cache a

significant amount of data.

No matter how fast your disk subsystem, accessing data from RAM is
always faster. In our environment, we expect a typical Unix fileserver

to show memory utilization above 95% due to the caching. Why is

this not a performance problem as it might be on an NT server? The
Unix OS is more efficient at memory allocation and page swapping

and can manage large amounts of data cache without affecting

performance.

In a small environment, less than 15 - 20 users, it is difficult to show a

significant difference between a native NT server and a Unix hybrid.

With hundreds of users, the differences are more obvious. Unix
threads and scheduling algorithm are more robust and allow a greater

number of concurrent processes without the OS becoming a

bottleneck.

Even with these advantages, performance is heavily dependent on the

configuration of the server, network, and clients. Figure 1 shows data

from recent PC Week lab tests demonstrating the high performance
capabilities of an SGI running Samba, and a Network Appliance F760.

PC Week Lab Tests (March 99)

1 3 0 1 4 0 1 5 0 1 6 0 1 7 0
Throuput (in Mbps)

SGI Origin 200 Network Appliance F760

Figure 1 PC Week tests of SGI Origin 200 running Samba 2.0.3. Network Appliance

performance listed for comparison purposes. Results demonstrate Samba's ability to scale

across multiple processors on high-end Unix machines.

Figure 2 shows the performance comparison of Linux running Samba

versus NT on identical hardware. These tests show two things. First

that the SMP enhancements in the Linux 2.2 kernel provide significant
performance gains. They also show that the Linux/Samba combination

offers scalability to match NT on SMP hardware.

4.0 Drawbacks of a Unix solution

As all system administrators know, no single solution is perfect in

every situation. The primary drawbacks of Unix are:

• Costs
• Hardware and software availability

4.1 Costs

Windows NT has the advantage of being an OS built on commodity
hardware. Dozens of vendors offer a variety of NT server solutions.

These realities make NT cheaper for smaller workgroup class servers.

On high-end systems, some of this price advantage disappears, but
there are still discrepancies.

Every implementation must balance the constraints of costs,

performance, and features. A Unix based solution for a small
workgroup that requires hardware investment may not make sense. An

NT server may provide the functionality at a lower cost. In
environments where stability, scalability, and performance are

tantamount to success, then a Unix solution may be the only viable

solution.

4.2 Hardware and software availability

The general problem is not availability of core components like CPU,

RAM, and disk subsystems but the more esoteric products like X.25,

Figure 2 PC Week labs comparison of Windows NT and Linux on similar
hardware.

serial ports, and other emerging technologies. The huge marketshare
difference between Windows NT and Unix draws developers who

perceive a smaller risk in going with a high-volume platform.

Most of these components are not critical for general file servers, but
may be an issue if plans include using the server as application server.

As with hardware, software availability for Unix lags behind the

Windows platform. Again, the core functionality is there, but smaller
niche products may be either non-existent or difficult to find.

With the relatively recent emergence of Unix-based Windows file

servers, there is also a lack of monitoring and administrative tools.
Administrators with a background in Unix support will not view this

as a hindrance because they have an arsenal of tools they already use.

For those new to the Unix, this is a little overwhelming. This can be a
difficult transition for administrators with an NT background

accustomed to the variety of disk, domain, performance, and system
monitoring tools with GUI interfaces.

5.0 The technologies at work

5.1 SMB

System Message Block (SMB) is the standard communication method

for transferring data between Windows systems.

In the early 80's, Microsoft, IBM, and 3Com worked to define a series
of protocols for sharing files and printers over a local area network.

The result of these efforts was version 1.0 of LanManager, a file and

print server for DOS. LanManager evolved over the years to the point
where it became the method for sharing files over a number of

protocols. The focus of this paper is SMB over TCP/IP since that is

the common protocol in most LAN/WAN environments.

5.1.1 SMB basics

SMB is a connection-oriented protocol that operates at the application
layer of the OSI model as shown in Figure 3. The NETBIOS Session

layer protocol handles binding of network names to TCP/IP addresses,

as specified in the RFC 1001 and RFC 1002. NETBIOS names are up
to 15 characters long. When a client wants to open a connection to a

server, it first does a lookup on the NETBIOS name. NETBIOS uses
WINS, LMHOSTS files, or a network broadcast to resolve names to

IP addresses.

In contrast, NFS is a stateless connection. This allows NFS to recover
when a server fails. NFS will retransmit the packet until it receives an

acknowledgement from the server. The NFS protocols resolve

machine names by either using Domain Name Services (DNS) or a
local hosts file.

5.1.2 Resolving NETBIOS names

Windows Internet Name Service is a function similar to DNS in the
Unix world although, by nature WINS address tables are dynamic.

Recent modifications to the DNS specification (RFC 2136) enhance

DNS by allowing for dynamic DNS.

Microsoft labels any client configured with WINS server information

as WINS-enabled. Most of the current Unix SMB servers support

WINS registration.

When a WINS-enabled client boots, it contacts the WINS server and

registers its current computer name and IP address. The WINS

database provides support for registering multi-home hosts and special
entries for domains and domain controllers.

Applications

SMB

NetBIOS

IPX/SPX

Physical Layer

TCP/IP NetBEUI

Figure 3 OSI model representation of SMB. This model shows

that SMB sits just below the application layer with other

protocols handling Name resolution and connection.

WINS-enabled clients use a name resolution method called h-node
broadcast. This Microsoft defined term is a hybrid (server query and

broadcast) method for name lookups. When a client wants to resolve

NETBIOS names, it first queries the WINS server. If the WINS server
does not have a record for the NETBIOS name, the client will

broadcast on the local subnet. If the machine is on the same subnet, it

will respond with its IP address.

Unlike DNS, the NETBIOS naming structure is flat. There is only one

machine with a given NETBIOS name registered in the WINS server.

This means there is no organizational hierarchy built into WINS
making it difficult to organize and manage computer names in large

organizations. Windows domains are simply a logical grouping and

not an integral part of the machine address as in a DNS domain.

Windows NT can optionally use a DNS server as a lookup service.

You lose the dynamic nature of WINS, however, and you should
continue to follow the 15 character naming structure to maintain

compatibility with WINS dependent clients. Most administrators

recommend that you keep the computer name (NetBIOS/WINS) the
same as the host name (DNS).

Another method for name lookups is a local LMHOSTS file. Similar

to the hosts file in Unix, the LMHOSTS file allows an administrator to
define a list of servers in a local file. This reduces the reliance on

network lookups. There is a limit to the number of entries an

LMHOSTS file can have and there are the usual problems of keeping
a local file updated.

5.1.3 Cruising the neighborhood

As part of the changes made to the SMB specification in Windows 95,
Microsoft added support for network browsing. Network browsing

services attempt to provide an easy to use graphical interface for

finding network services. Browsing is complicated and fragile by
nature. Using network browsing in a large enterprise can be frustrating

for users due to the delays associated updating the browse lists.

Browsing is somewhat hierarchical and based on a broadcast
registration process. In a domain environment, the primary domain

controller becomes the Domain Master Browser.

For each subnet, there is a Master Browser. The Master Browser for a
subnet is chosen via an election process. When a Windows machine

boots, it broadcast on the subnet looking for a Master Browser with

which to register its name. IP address, and workgroup/domain. If it
fails to locate a Master Browser, the machine sends out a packet that

starts an election process.

There is a preferred order to deciding which machine wins the
election. The selection preferences in descending order are Windows

NT Server, Windows NT workstation, Windows 98, Windows 95, and

WFW 3.11. Each machine looks at the packet and decides if it has
precedence over the previous machine. When the packet gets back to

the originator, there will be a winner. In the Windows NT world,

registry changes allow you to control whether the machine will
become a Master Browser. Unix implementations that support

browsing also offer ways to configure the server's response to election
packets.

Once elected, the Master Browser maintains a list of all machines on

the subnet. The Master Browser passes this list to the Domain Master
Browser of the machine's Domain. The Domain Master Browser

builds the entire list and sends it back out to the Browse Master on

each subnet.

When a machine is properly shutdown, it sends a packet to the Master

Browser informing the server to update its list. When a machine

crashes or is not shutdown properly, the record will remain until it
times out (approximately 10 minutes). This can cause confusion since

a machine will remain in the browse list until it times out. When the

user double-clicks on the computer, they get a generic non-descriptive
error message.

There is some redundancy in the browsing mechanism with an

election for a backup Browse Master on each subnet. Worse case
scenarios prevent a machine from appearing in the browse list for up

to 57 minutes. Whether you have the Unix SMB server become a

Browse Master will depend on the stability of your network clients. If
there are NT servers or workstations on each subnet that are stable

than you will be fine. Otherwise, the choice is to either enable the

Browse Master functions of the server or live without the browsing
capability.

5.1.4 Establishing the connection

Once the name is resolved, the client sends a connection request to the

server. Depending on the access controls placed on the resource, the

server may send back a request for authentication. When a Windows
client logs onto the network at startup, the system caches the user ID

and password and provides them for logon validation when requested.

Before the release of Service Pack 3 for Windows NT, authentication
used a clear-text format to transmit the password. Windows NT 4 SP3

and Windows 98 now use encrypted passwords. While it is possible to

change these machines back to clear text passwords, this is not a
recommended configuration. All the Unix SMB servers support

encrypted password authentication.

If the password is not cached or is incorrect, the user will be prompted

for a username and password (Under Windows 95, the user will only

be prompted for a password because the system always uses the
cached username). Once authenticated, the server opens a connection

to the client. The client then makes requests like open file, lock file,

close file, change attributes, etc.

Windows uses domai8n to centralize account administration and

authentication. The method for assigning access privileges

recommended by Microsoft is to create Domain accounts and place
them in Domain groups. On each member server you then create local

groups and place the domain groups inside the local groups. You then

use the local groups to assign access to resources on the server. When
a client accesses the server, it sends its domain account and password,

which the member server passes to a Domain Controller for

authenticates.

The process for handling this in Unix depends on the server

installation and network configuration.

Unix servers offer more flexibility on authenticating the user that may
prove advantageous in some environments. The default method in

most systems is to authenticate the user to the local password file (or

NIS).

Another option is what most vendors call proxy authentication. This

means that the server passes authentication to another server. When

the Windows client connects, the server sends the ID and password to

the proxy server for authentication. The proxy server responds with an
acknowledgement of whether or not the user ID and password

matched. Most packages can authenticate to either another Unix

machine or a Windows NT server (PDC, BDC, or member server).

For non-AT&T Services for Unix systems (e.g. TAS or Samba), this

method has more complications. An ASU-based system understands

Windows Domain and intrinsically knows how to communicate with
the Domain Controller. The advantage of this method is better support

for redundancy of Domain Controllers. When a machine wants to

authenticate, it queries the WINS server for a list of Domain
Controllers. It will then work through this list starting with the closest

one, to find a server that responds. If a particular Domain Controller is

down, the client goes to the next server in the list.

For systems that are not Domain-aware, the administrator must

explicitly define the IP addresses or nodenames of the Domain
Controllers. Most implementations do not provide for more than one

or two entries. If the communications link between the servers breaks

the Unix SMB server will deny any new connections because it cannot
authenticate the users.

In most environments, two Domain Controllers provide the stability

and reliability needed, but in large organization with highly distributed
Domain environments, this can be an issue.

Authentication is only the first step to gaining access. Once connected,

users must understand and deal with the issues relating to mapping of
permissions between the Unix and Windows world.

6.0 Cross-platform issues

6.1 File locking

To successfully implement and manage a hybrid server, administrators

must understand how the server handles file locking across

environments. Unix file locking mechanisms are very different from
Windows and this is a common cause of frustration.

Some applications that run seamlessly on multiple platforms like
Adobe FrameMaker support application driven locking and this is the

best solution. In the case of Frame, the application creates a lock file

in the same directory as the opened file. If another instance of
FrameMaker attempts to open the same file, it will detect the lock file

and let the user know the file is already open.

Many other applications support internal file locking but most are not
cross-platform. There is no application driven method to keep a Unix

user from using VI to open a file that a Windows user has open in

Notepad.

6.1.1 A lack of communication

In most Unix SMB implementations, there is no method for the Unix-

based lock daemon to communicate with the Windows locking
mechanism.

The only systems that promise a combined lock manager are servers
commonly referred to as Network Attached Storage (NAS) such as the

Network Appliance Filer. Even these systems have weaknesses and do

not provide a high level of integration. Without this layer of
communication, there is no authoritative lock database.

6.1.2 Two different languages

The different locking features of SMB and NFS are the root of the
problem. Administrators make assumptions that are not valid across

platforms.

In both SMB and NFS, there are two basic functional locks, open
modes (file lock or flock under NFS) and record locking. Open modes

control concurrent access to entire files, such as in the following

example:

Program A, when opening a file, specifies an open mode,

which tells the server what kinds of access by other clients and

programs that A will allow. This can be as extreme as not
allowing any other access (exclusive use by A), allowing any

access of any type, or somewhere in between, e.g., allow other

opens for read-access only.

Record locks (called POSIX locks in Unix) control concurrent access

to sections of open files. For example:

Program A opens a file, specifying the system to allow other
"opens" of any access. At some point, A wants to ensure that a

"record" in the file belongs exclusively to A, so it requests a

lock on the range of bytes in the file that represent that record.
While A holds the lock, no other programs or clients that open

the file can read or write to the locked range.

Programs such as word processors usually use an open mode to
control access and ensure that no other application modifies the file.

Programs that maintain databases must allow multiple users to update

a file and use record locks to ensure that only one user at a time
updates a given record.

Unix deviates from Windows at this point. In an NFS environment,

locks are advisory. That means they are a convention and applications
do not have to check for or create a lock when opening a file. While

locked, other processes that do not check for existing locks can still
read or write to the file.

In SMB, locks are essentially mandatory. SMB is a connection-

oriented protocol and part of that protocol relies on using locks to
maintain server connections.

There is the concept of mandatory locks in NFS, but the

implementation of mandatory locks is not universal. In addition, few
applications take advantage of mandatory locking when it is available.

SMB has another feature called opportunistic locking that widens the

gap between the environments even further.

6.1.3 Opportunistic locking

Opportunistic locking (Oplock) is a very aggressive form of local file

caching. There is no equivalent of opportunistic locking in NFS
(depending on your perspective of NFS V3 and AFS this may not be

completely true).

If an application opens a file in a non-exclusive (deny none) mode, the
redirector requests an opportunistic lock of the entire file. As long as

no other process has the file open, the server will grant this oplock,

giving the redirector exclusive access to the specified file. This will
allow the redirector to perform read-ahead, write-behind, and lock

caching, as long as no other process tries to open the file.

When a second process attempts to open the file, the server asks the
first application to Break Oplock or Break to Level II Oplock. At that

point, the redirector must invalidate cached data, flush writes and

locks, and release the oplock, or close the file.

Opportunistic Locking level II, provides a method for granting read

access to a file by more than one workstation, and these workstations

can cache read data locally (read-ahead). As long as no station writes
to the file, multiple stations can have the file open with level II

oplock.

Opportunistic locking has risks. If the implementation of opportunistic
locking is not rock-solid, and some administrators question the

stability of current Windows implementations, one client can update a

file without the server properly notifying other clients to flush their
cache. This creates a situation where two applications successfully

write to a file, resulting in unexpected data loss..

Unix and Windows clients are working in separate worlds when it

come to file locking and it is easy to create a situation where users on

both platforms are modifying the same file without protecting who has
write access.

6.2 File naming conventions

If Unix, Windows NT, and Windows 95 are the only platforms in use,
then filename mapping is not a major problem. Both systems support

similar features and filename restrictions.

The only difference is that Unix is case sensitive and Windows NT
and 95 are not. Windows NT will preserve case when copying or

moving files though. Table 1 shows an example of how TotalNet

Advanced Server from Syntax handles file name collisions. As can be
seen from this example, the primary problem is with older DOS and

Windows 3.11 clients and not with the combination of NT, 95, and

UNIX.

Client Filename

Windows 95, and NT ReallyLongFile.name

ReallyLongFile2.name

Dos, Windows for

Workgroups, NetWare

REALL~18.NAM

REALL~4C.NAM

UNIX ls ReallyLongFile.name

ReallyLongFile2.name

Table 1 an example of how TotalNet Advanced Server handles mapping filenames
across platforms. Windows 95, NT and UNIX have similar restrictions on filenames,
although NT is not case sensitive.

There are two minor usability issues to keep in mind. First, Windows

users have a tendency to use spaces as part of a filename. This makes
it difficult to work with the file at the command line in Unix. While

not a burden, it is a nuisance. The second thing to remember is that

Windows maps files to applications based on the three-letter extension
(.txt, xls, .doc, etc.). Unix users should take care to preserve these

extensions and add them where appropriate when creating new files.

With DOS, Windows 3.1, Macintosh, and NetWare clients filename
mapping is significantly more complicated. Few applications support

all platforms having simultaneous access and the method of handling

filename mapping varies. When building a multi-platform server,
administrators should evaluate how the server software will map

filenames and ensure that the appropriate documentation is available
to the user.

6.3 Permissions

When configuring a fileserver, proper security is a major concern.
Security is more than just keeping out the latest Internet attackers, but

also providing a mechanism to control file and folder access. Both

Windows and Unix support advanced capabilities like Access Control
Lists, but their implementation of permission, inheritance, and the

fundamental logic of access control differ. Similar to file locking, few

systems offer integrated permissions capability.

6.3.1 Two methods of control

When selecting a Unix SMB server, administrators have two methods

of access control from which to choose. Servers like Samba and TAS,

use the Unix file permissions and access control lists. Neither package
maintains NT style Access Control Lists. In order to determine if a

user should have access to a particular file or folder these systems map

Windows accounts to a UNIX ID. The default mapping is by name,
but administrators can define username maps for those whose

Windows and UNIX IDs do not match.

TAS and Samba lack any knowledge of Windows domain groups.
This means that administrators manage groups in the Unix realm. The

problem in a mixed platform environment is that administrators and
users must maintain two group databases, Unix and Windows.

The alternative is a system based on the AT&T Services for Unix

(ASU) code, which understands Windows permissions and Access
Control Lists. This lets administrators set permissions based on

Windows domain accounts and groups. There is no mapping between

worlds with each side maintaining unique sets of permissions. Again,
this makes cross-platform file sharing difficult. When Windows users

set file permissions, there may be no adjustment to the Unix

permissions and the user may not get the desired result.

Some solutions attempt to integrate the two permission systems but

most are simplistic in nature. Typical behavior is to map to the lowest

common denominator. When a user updates the permissions of a file
in the Windows world, the software will attempt to update the owner

and group permissions on the UNIX side. Most systems do not map

the entire Access Control List between environments.

The advantage of the Samba and TAS method is that there is one set

of permissions. The problem is that these systems provide no

graphical Windows tools to administer permissions. While not a loss
to Windows 95 users who lack access to permissions even on a native

NT server, NT users will be disappointed when they go to the Security

tab, click Permissions, and get an error message.

Users must telnet to the server and use traditional Unix utilities to set

file permissions. There is an effort underway to enhance Samba to

support setting the ACL from a Windows machine. Once developed,

these systems will offer the advantage of a single permission set and
access to them from both worlds.

6.3.2 A different way of thinking

When setting file and folder access, Unix users tend to think at the file
level, leaving top-level directories more open. However, in the

Windows world the mindset is to secure the folder and not worry

about individual file permissions. You will see this in the basic
structure of the Windows NTFS file system. By default, the

"Everyone" user has full control on the entire file system. To secure a

directory, the most common solution is to take the "Everyone" user
out of the permissions for the folder. This keeps the user from

accessing the directory and makes individual file permissions less
significant.

Each method has advantages; the primary one for the Windows model

is that it limits the number of files/folders that need explicit
permissions. Neither method is inherently better but the transition will

require some user training.

6.3.3 Who gets what by default?

This is the most significant permission issue, administrators will

encounter when setting up a non-Windows SMB server. In Unix, the

method for assigning default permissions is the umask. The umask
defines default permissions for new files and folders. The owner and

group are set based on the UID and GID of the process creating the

file or folder. The problem with the umask method is that it has no
concept of Access Control Lists. Setting owner and group permissions

by default may not be enough.

The second problem is that none of the current Unix implementations
offers a personal umask. There is a single umask for the entire server

or share point. The confusion this creates is that users want individual

control over the default permissions of files/folders.

In the Windows realm, users expect files and folder to inherit

permissions from the enclosing folder. They set the permissions on the
folder and when they or anyone else places a file or folder in the

directory, it inherits those permissions.

There are a few options on some Unix platforms to simulate this
behavior such as setuid and setgid, along with default ACL

permissions, but they require a significant amount of Unix

administrative knowledge and still lack one crucial feature. If Mary
creates a file in John's directory, the owner of the file will default to

Mary. If the system umask is restrictive and the setgid bit is not on,

John may wind up with a file, which he cannot access or delete.

ASU-based products resolve this problem for Windows permissions

because they behave like a native Windows NT server. There is still

an issue with default Unix permissions.

6.4 File attributes

NFS and SMB have a slightly different set of file attributes they store.
While this does not create any inherit compatibility issues, it does

affect how administrators must handle backups and restores.

Since most systems are hybrid in nature and the underlying
filesystems (UFS) do not support SMB attributes, they must store

these attributes in "shadow" files. These are usually hidden "dot" files

in the same directory as the file with the SMB attributes.

This means that when an administrator does a restore, they may need

to restore the shadow file to retrieve all the attributes. Whether this is

critical depends on the value of these attributes. The SMB attributes
stored include creation date and property bits like locked and

archived.

For appliance type server like the Network Appliance Filer, the
problem is slightly different. The NetApp supports SMB attributes as

part of its native filesystem. The problem is that because of their good

NFS performance and inability to support a local backup client, many
sites backup the servers over NFS. Such a backup configuration fails

to capture the SMB attributes. The alternative is to backup over CIFS,

to backup to a local tape drive, or to use NBMP.

7.0 Tuning performance

SMB does not offer administrators the same flexibility and control
over performance as NFS does. NFS allows administrators to control

read/write sizes, timeouts, retries, and a number of other parameters.
None of these is accessible in an SMB environment.

There are two basic ways to tune performance.

• UNIX server tuning
• Multi-homing with WINS

7.1 UNIX server tuning

Any change that enhances the underlying filesystem, network, or
processor performance will enhance SMB server performance. A few

basic configuration parameters will significantly enhance overall

system performance.

RAM

Increasing the amount of RAM will have an immediate effect by
allowing the server to cache more data, improving read performance.

On systems with large numbers of users, the general recommendation

would be no less than 1 GB of RAM.

SMP

Adding multiple CPUs will work as long as the server software is

threaded and scalable. Before adding CPUs, ensure that the SMB
server application creates an individual thread for each connected

user, and does not have any ties back to the parent thread that might

cause sever bottlenecks under load.

Filesystems and disk subsystems

Filesystem performance tuning is another area where administrators

can enhance overall server performance. Which parameters to change
depend on the exact filesystem. Refer to the system documentation for

information on tuning a particular filesystem. One thing to watch for

is journaled filesystems. Such filesystems have advantages but also
have a significant amount of overhead. Most offer parameters to

control the level of jounaling and administrators should explore thee

options.

The final piece to look at is the hardware controller on the disk

subsystems. Systems that lack NVRAM for caching suffer in

performance comparisons. NVRAM is basically a write-ahead cache
that store disk writes and allows system calls to return immediately

instead of waiting for the write to disk to complete. This allows writes
to occur asynchronously and improves overall performance. NVRAM

has a significant impact on write performance and almost no impact

on read performance. Administrators should avoid systems without
NVRAM unless the vendor clearly demonstrates that there is no

performance disadvantage.

7.2 Multi-homing with WINS

Windows Internet Naming Service (WINS) supports registering

multiple IP addresses under a single computer name. When a client

sends a name lookup request, the WINS server returns the entire list of
IP addresses. The client starts with the "closest" network interface

when establishing a connection.

With minimal effort and expense, administrators can add enough

network interfaces to a server to allow for connections on every

subnet. Clients automatically route to the interface on their subnet.
Doing this distributes traffic across multiple cards, reduces the load on

network routers, and improves reliability by removing one of the

failure points.

8.0 Summary

Any one of the commercial products or the freeware Samba fulfills the

role as an alternative to a native Windows-based fileserver. ASU-
based systems offer the advantage of integrating tightly into existing

Windows NT environments and a growing number of companies are

licensing and supporting this code.

Solutions like TAS and Samba offer the advantage of independence

from the ASU software license. The ASU code license only covers

Windows NT 4 networking code. Companies using ASU code lack the
experience to re-engineer the Windows protocols and may be at a loss

when it comes time to upgrade and support Windows 2000.

The non-ASU solutions still struggle to catch up to NT in some ways
but generally offer better performance and scalability.

If you have an existing Windows infrastructure and want to integrate
existing Unix servers, TAS and Samba are the fastest and easiest

alternative. If you need tight integration between Unix and NT, you

will probably be more interested in an ASU solution. The problem is
that only a few Unix vendors offer an ASU solution for their OS, and

there is no generic provider of such a solution.

